yolo v4
文章平均质量分 65
Python图像识别
这个作者很懒,什么都没留下…
展开
-
darknet安装 Ubuntu18.04
安装darknet1、安装git终端输入:sudo apt-get install git2、安装darknet在主文件下终端输入(即/home/***(您的服务器名字)这个目录):git clone http://github.com/pjreddie/darknet.gitcd darknet修改makefile文件:开头部分令opencv=1,同时令NVCC = /usr/local/cuda-7.5/bin/nvcc后保存退出终端输入:make -j163、下载yolov3.原创 2021-08-12 15:33:08 · 380 阅读 · 0 评论 -
darknet 版本yolo v1 - v4 编译及环境配置 Ubuntu18.04
darknet训练自己的数据一. 电脑环境1. GPU: 1080TI2. CUDA:10.03. tensorflow:1.14.04. keras:2.3.15. Ubuntu18.04CUDA CUDNN等具体安装步骤见: https://blog.csdn.net/qq_28949847/article/details/110122179二. github网址https://github.com/AlexeyAB/darknet三.环境配置步骤:1. cd darknet原创 2021-08-11 11:20:40 · 1165 阅读 · 0 评论 -
yolov1 - yolov4 深度理解
一、目标检测的各个组成部分 1. Input 2. Backbone 3. Neek 4. Head 共包含上面4个部分,其中可以替换的结构如下图所示: 说明:Dense Prediction:标注出图像中每个像素点的对象类别 Sparse Prediction:稀疏预测七、问题:什么情况下需要使用nms?答:图片中有多个同类目标时。同类:最大抑制只能是抑制同一类的框多个:当图片中只有1个目标时,直接输出score最高的即可,不需要nms。y原创 2020-11-03 17:13:20 · 3707 阅读 · 1 评论 -
yolo v4 Mosaic 代码详解
代码如下:可直接运行,带有详细注释。import numpy as npfrom PIL import Imageimport cv2def rand(a=0, b=1): return np.random.rand()*(b-a) + adef merge_bboxes(bboxes, cutx, cuty): """调节切割后box""" merge_bbox = [] for i in range(len(bboxes)): for bo原创 2020-08-18 16:01:47 · 1150 阅读 · 1 评论 -
darknet53中@wrap(Conv2D)详解
主要的功能其实就是python中的装饰器,对conv2d函数进行了功能修改。from keras.layers import Conv2D这里面的Con2D进行了两处修改变为了Darknet中所需要的卷积方式(为什么要这么改呢 可以去看yolo3的论文):1.正则化方式改为L2正则化,默认是None2.当步长为2时, padding的方式才为valid。默认情况下是步长为1,padding为valid。@wraps(Conv2D)def DarknetConv2D(*args, **kwargs原创 2020-06-27 18:09:59 · 1186 阅读 · 0 评论