HDU2558 GCD (欧拉函数)

  • 题目链接:**http://acm.hdu.edu.cn/showproblem.php?pid=2588

  • 题意:已知N,M,求满足gcd(x,N)>=M,的x的个数

  • 思路:
    因为: gcd(x,N)>=M
    且gcd(x,N)是N的因子
    所以设:gcd(x,N)=p,p>=M
    题目可转化为对每一个p求满足 gcd(x/p,N/p)=1的x的个数
    即,求N/p(N/p>=M)的质因子的个数,用欧拉函数求解

  • 注意:在枚举所有N的因子p时,枚举从1~根号N即可,通过因子i即可算出相对应的因子N/i,否则会超时啊啊啊QAQ

  • 知识点:欧拉函数,代码模板:

ll oula(ll x){//欧拉函数 
	ll res=x;
	for(ll i=2;i*i<=x;i++){
		if(x%i==0) {
			res=res/i*(i-1);
			while(x%i==0) x=x/i;
		}
	}
	if(x>1) res=res/x*(x-1);
	return res;
}

  • 完整代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll oula(ll x){//欧拉函数 
	ll res=x;
	for(ll i=2;i*i<=x;i++){
		if(x%i==0) {
			res=res/i*(i-1);
			while(x%i==0) x=x/i;
		}
	}
	if(x>1) res=res/x*(x-1);
	return res;
}

int main(){
	int n,m;
	int t;
	scanf("%d",&t);
	while(t--){
		ll ans=0;
		scanf("%d %d",&n,&m);
		for(ll i=1;i*i<=n;i++){
			if(n%i==0&& i>=m &&i*i!=n) ans+=oula(n/i); 
			if(n%i==0&& (n/i>=m)) ans+=oula(i); 
		}
		printf("%lld\n",ans);
	}
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值