-
题意:已知N,M,求满足gcd(x,N)>=M,的x的个数
-
思路:
因为: gcd(x,N)>=M
且gcd(x,N)是N的因子
所以设:gcd(x,N)=p,p>=M
题目可转化为对每一个p求满足 gcd(x/p,N/p)=1的x的个数
即,求N/p(N/p>=M)的质因子的个数,用欧拉函数求解 -
注意:在枚举所有N的因子p时,枚举从1~根号N即可,通过因子i即可算出相对应的因子N/i,否则会超时啊啊啊QAQ
-
知识点:欧拉函数,代码模板:
ll oula(ll x){//欧拉函数
ll res=x;
for(ll i=2;i*i<=x;i++){
if(x%i==0) {
res=res/i*(i-1);
while(x%i==0) x=x/i;
}
}
if(x>1) res=res/x*(x-1);
return res;
}
- 完整代码:
#include<bits/stdc++.h>
using namespace std;
#define ll long long
ll oula(ll x){//欧拉函数
ll res=x;
for(ll i=2;i*i<=x;i++){
if(x%i==0) {
res=res/i*(i-1);
while(x%i==0) x=x/i;
}
}
if(x>1) res=res/x*(x-1);
return res;
}
int main(){
int n,m;
int t;
scanf("%d",&t);
while(t--){
ll ans=0;
scanf("%d %d",&n,&m);
for(ll i=1;i*i<=n;i++){
if(n%i==0&& i>=m &&i*i!=n) ans+=oula(n/i);
if(n%i==0&& (n/i>=m)) ans+=oula(i);
}
printf("%lld\n",ans);
}
}