首先,什么是生成器??
1:如果一个函数中使用yield关键字,那么这个函数就是一个生成器。
2:生成器是一种推导逻辑,调用生成器返回迭代器。
>>> fsh=(x**2 for x in range(5))
>>> print(next(fsh))
0
>>> print(next(fsh))
1
从代码得知,fsh就是一个生成器,但是值还没有在内存中生成,如果直接调用fsh,返回一个内存地址值
generator保存的是算法,每次调用next(fsh),就计算出fsh的下一个元素的值,直到计算到最后一个元素,
没有更多的元素是,就抛出StopIteration的错误。
>>> print(next(fsh))
Traceback (most recent call last):
File "<pyshell#84>", line 1, in <module>
print(next(fsh))
StopIteration
当然这种不断调用next()实在是不方便,正确的方法是使用for循环,因为generator也是可迭代对象。
下面我们通过著名的斐波那契数列,来实际操作一下:
>>> def xxy():
count=0
a,b=0,1
while True:
print(b)
a,b=b,a+b
count+=1
return 'game over'
>>> xxy()
1
1
2
3
5
8
13
从上面的例子中,可以看出斐波那契数列就是除了第一个和第二个数外,任意一个数都可由前两个数相加得到。
这种逻辑非常类似于generator
所以,要把xxy()函数变成generator,只要把print(b)替换成yield
>>> def xxy():
count=0
a,b=0,1
while True:
yield b
a,b=b,a+b
count+=1
return 'game over'
>>> xxy()
<generator object xxy at 0x00000229EA4999E8>
>>> it=xxy()
>>> print(next(it))
1
>>> print(next(it))
1
>>> for x in it:
print(x)
2
3
5
8
13
与原先的代码相比,把print(b)替换成yield b之后,调用xxy()函数只会返回一个内存地址值,先前也说过,generator可以
使用next()计算下一个元素的值,从上面的例子中,我们在循环过程中不断调用yield,就会不断中断,当然我们要设置一
个条件来退出循环,同样,把函数变为generator之后,我们基本不用next()来回去下一个返回值,直接用for循环。
另外通过type()可以知道xxy()返回的是什么类型
>>> print(type(it))
<class 'generator'>
好了,今天和大家分享到这里,其实在实际应用中,生成器比迭代器用的多。
最后总结:
生成器一定是迭代器,但是迭代器不一定是生成器,因为迭代器中没有yield。