K-means算法分析

主要大致介绍算法
有散点图如下所示

从图中看出,我们大致可聚成3类,N类也可

我们以3类假设,介绍大致过程
第一次迭代:
1.首先随 机取3个点,我们称之为 中心点,A,B,C

2.计算每个点到中心点的距离,如果某个点距离中心点的距离最近,我们把这个点划分到这个最近的中心点上。大致划分三个类
3.迭代3个类,通过 每个类的所有点计算出属于 该类的中心点,开始第二次进行迭代,达到效果 找出相对于属于该类的中心点修正
计算点的公式,多个也是一样

第二次迭代:

与一次相同。迭代次数越高越准确。这也是相对的
算法原理大致介绍致此。

在此我们又遇到一个新的问题, 如何选出合适的聚类数,或者说聚多少类合适
一种算法是,当聚1类时,求每个点到中心距离记作d1,聚2类时,求点到中心距离记作d2,类推,d3,d4,d5...

根据d2,d3,d4等画出散点图,人工识别的方式看,选合适的斜率。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值