主要大致介绍算法
有散点图如下所示
从图中看出,我们大致可聚成3类,N类也可
我们以3类假设,介绍大致过程
第一次迭代:
1.首先随
机取3个点,我们称之为
中心点,A,B,C
2.计算每个点到中心点的距离,如果某个点距离中心点的距离最近,我们把这个点划分到这个最近的中心点上。大致划分三个类
3.迭代3个类,通过
每个类的所有点计算出属于
该类的中心点,开始第二次进行迭代,达到效果
找出相对于属于该类的中心点修正
计算点的公式,多个也是一样
第二次迭代:
与一次相同。迭代次数越高越准确。这也是相对的
算法原理大致介绍致此。
在此我们又遇到一个新的问题,
如何选出合适的聚类数,或者说聚多少类合适
一种算法是,当聚1类时,求每个点到中心距离记作d1,聚2类时,求点到中心距离记作d2,类推,d3,d4,d5...
根据d2,d3,d4等画出散点图,人工识别的方式看,选合适的斜率。