最优雅最简洁的VsCode配置Jupyter多版本Python内核的方法(不涉及Anaconda)

本文介绍了如何在VsCode中使用Jupyter运行不同版本Python代码,包括安装Jupyter扩展,通过pip安装ipykernel,选择正确的Python解释器内核,以及解决未安装ipykernel时的报错问题。同时提到了虚拟环境的配置方法和放弃Anaconda转而使用VsCode的原因。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

接上一篇笔记,当我们安装好了多个版本的Python解释器,同时想要在VsCode中使用Jupyter来运行不同版本Python编写的代码。

可以这样进行操作:

1.VsCode安装Jupyter扩展插件

点击左侧扩展插件的按钮,搜索框中输入【Jupyter】,默认第一个会显示微软发布的Jupyter插件,点击【安装】

2.Python安装ipykernel内核

以Python3.11版本为例,【win+r】输入【cmd】打开命令提示符窗口,输入下面安装ipykernel的命令:

pip3.11 install ipykernel

 3.回到VsCode,创建ipynb文件,右上角选择Python解释器

回到VsCode,新建一个以【.ipynb】结尾的文件,这个文件格式就是jupyter notebook编写的python代码的存储格式,点击右上角的【选择内核】(由于我这里已经选择了我的python3.11解释器所以显示的是python版本号,如果还没有选择的话,这里默认出现的是“选择内核”)。

 然后注意!!!然后注意!!!然后注意!!!这里一定要选择刚刚用pip指令安装了ipykernel的python版本!这里一定要选择刚刚用pip指令安装了ipykernel的python版本!这里一定要选择刚刚用pip指令安装了ipykernel的python版本!

 4.运行代码

编写Python代码,这里写两个简单的for循环,点击上面的全部运行,可以看到代码全都正常运行了!这样我们就在VsCode里面配置好了一个能运行Python3.11内核的Jupyter环境。

5.未安装ipykernel运行报错

如果我们刚刚在选择Python解释器版本的时候,选择了没有用pip指令安装ipykernel的Python版本,那么我们运行Python代码时就会报错,如下:

这里我选择了还没有安装ipykernel的Python3.10版本解释器作为内核,可以看到代码无法正常运行。

 解决的方法很简单,【win+r】输入【cmd】打开命令提示符,输入以下命令,回车,给Python3.10安装ipykernel。

pip3.10 install ipykernel

安装完成后,回到VsCode,注意看右上角,我选择的内核还是Python3.10,但是运行代码,已经可以全部正常运行了!

 写在最后:虚拟环境的配置方法也是一样的,如果在创建虚拟环境之前你的电脑里Python安装了ipykernel,那么创建虚拟环境之后这个虚拟的Python环境也会带有ipykernel,这个时候要注意通过虚拟环境的名字或者路径来区分。

原本我使用Anaconda进行开发,后来感觉Anaconda也不是非常方便,因为Anaconda没有办法下载一些特定的比较新版本的第三方库,而且工作后很多同事用VsCode来写代码,所以我就安装了VsCode,同时也安装了多个版本的Python解释器。网上关于如何用VsCode配置Jupyter内核的教程基本都没有教大家多个版本的Python怎么处理,如果查询Jupyter配置多版本Python内核出来的结果又基本全都是用的Anaconda,无奈之下所以只能自己边查教程边自己摸索,这篇文章就是今天的成果。

### 配置 VSCode 支持 Jupyter Notebook #### 安装扩展 为了使 Visual Studio Code (VSCode) 支持 Jupyter Notebook 功能,需先安装官方提供的 Python 扩展包以及 Jupyter 扩展包。这可以通过访问 VSCode 的市场页面来完成,在搜索栏输入 "Python" 和 "Jupyter" 并按照提示进行安装。 #### 设置工作区解释器 对于希望使用的特定项目或文件夹设置合适的 Python 解释器非常重要。通过点击左下角的状态栏中的 Python 版本号可以选择同的解释器版本[^1]。 ```json { "python.pythonPath": "<path_to_your_python_interpreter>" } ``` 此 JSON 代码片段可以被加入 `.vscode/settings.json` 文件用来指定项目的 Python 解释器路径。 #### 创建与管理虚拟环境 当需要隔离同项目的依赖关系时,建议为每个项目创建独立的 Conda 或 venv 虚拟环境。具体做法如下: - **创建**:利用 `conda create -n my_env python=3.x` 命令建立新的虚拟环境; - **移除**:如果再需要某个环境,则可通过执行 `conda remove -n my_env --all` 来彻底清除它; - **激活/停用**:分别使用 `conda activate my_env` 及 `conda deactivate` 切换活动状态; 一旦完成了上述步骤之后,还需要确保该环境中已安装了必要的软件包如 IPython Kernel (`ipykernel`) ,以便能够正常加载到 VSCode 中作为可用选项之一[^2]。 #### 添加 Jupyter 内核VSCode 成功构建好所需的开发环境后,下一步就是让 VSCode 认识到这个新设立好的内核。通常情况下只需简单重启应用程序就能实现自动检测。过有时可能还需手动刷新界面或是重新启动整个 IDE 实现佳效果。 #### 使用调试功能 针对那些想要更深入探究程序逻辑的人士来说,VSCode 提供了一套完整的调试工具集给用户选择。只需要选定目标单元格按下 F5 即可开始逐步跟踪代码流程,期间还可以借助其他辅助按键比如 F10(逐过程)、F11(逐语句)来进行更加细致的操作[^3]。 #### 掌握快捷键提高效率 熟悉一些常用的键盘组合可以帮助开发者更快捷高效地编写和测试脚本。例如,“B”用于新增加一个空白区域位于现有部分之下;而连续敲击两次 “D”,则会迅速抹去当前所在位置的内容。更多关于导航、编辑等方面的实用指令可以在参考资料中找到详细介绍[^4]。
评论 7
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值