poj3641(快速幂,以及素性测试方法的总结)

/*
translation:
	给出一个数,判断其是否是伪素数。一个数是伪素数满足下面两个条件:
	1,p不是素数。	2,满足费马定理a^p==a(mod p)
solution:
	快速幂简单题。
	快速幂计算,然后朴素素性测试即可
note:
	* 总结下素性测试的几个方法
		1:朴素素性测试(反复平方法)
		即从2~根号n根据素数的性质判断,如果有数字能够整除N.说明n不是素数。复杂度O(根号n)
		2: 埃氏筛法
		复杂度为O(nloglogn)。但是同时对于空间的要求比较高。因为筛去的结果要保存在一个bool数组
		里面。与朴素测试相比,是对连续一整段数字进行判断。通常用来打表。
		3: miller-robin随机性素数测试
		是针对单个数的测试,有一定概率失败。但是可处理的数据量可以达到2^64左右
date:
	2016.10.28
*/
#include <iostream>
#include <cstdio>

using namespace std;
const int maxn = 1e9;
typedef long long ll;

ll p, a;

ll powMod(ll x, ll n, ll mod)
{
	ll res = 1;
	while(n > 0){
		if(n & 1)	res = res * x % mod;
		x = x * x % mod;
		n >>= 1;
	}
	return res;
}

bool isPrime(ll x)
{
	for(ll i = 2; i*i <= x; i++){
		if(x % i == 0)	return false;
	}
	return true;
}

int main()
{
    while(cin >> p >> a){
		if(!p && !a)	break;
		if(!isPrime(p) && powMod(a, p, p) == a)	cout << "yes\n";
		else	cout << "no\n";
    }
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值