数据结构(java语言描述)--队列

队列的特点是先进先出。我们将以之前写的链表和动态数组为基础,编写不同的queue。

先建设它的抽象类

public interface Queue<E> {
    int getSize();
    boolean isEmpty();
    void enqueue(E e);
    E dequeue();
    E getFront();
}

基于array的arrayqueue

public class ArrayQueue<E> implements Queue<E> {

    private Array<E> array;

    public ArrayQueue(int capacity){
        array = new Array<>(capacity);
    }

    public ArrayQueue(){
        array = new Array<>();
    }

    public int getCapacity(){
        return array.getCapacity();
    }

    @Override
    public int getSize() {
        return array.getSize();
    }

    @Override
    public boolean isEmpty() {
        return array.isEmpty();
    }

    @Override
    public void enqueue(E e) {
        array.addLast(e);
    }

    @Override
    public E dequeue() {
        return array.removeFirst();
    }

    @Override
    public E getFront() {
        return array.getFirst();
    }

    //重写toString方法
    public String toString(){
        StringBuilder res = new StringBuilder();
        res.append("top: [");
        for (int i = 0; i < array.getSize(); i++){
            if (i+1 != array.getSize()-1){
                res.append(array.get(i) + ", ");
            }
            res.append(array.get(i) + "] tail");
        }
        return res.toString();
    }

    public static void main(String[] args) {
        ArrayQueue<Integer> arrayQueue = new ArrayQueue<>();
        for (int i = 0; i < 10; i++){
            arrayQueue.enqueue(i);
        }
        for (int i = 0; i < 10; i++){
            System.out.println(arrayQueue.dequeue());
        }
    }
}

可以看出,数组型队列在入队的操作上时间复杂度是O(1),在出队操作时需要完全遍历,时间复杂度是O(n)。接下来我们将队列进行改写:

我们将队列改为循环队列




我们始终为data数组中的元素预留一个位置,它是tail所指向的位置,起始位置(即数组为空时front和tail是重合的),front始终指着数组中最早插入的元素。当出队时,front指向下一个元素;当入队时,tail原先的位置放入入队的元素,tail向后移动一位。如此这番,直到tail到达了data.length,即容纳量的边界。而front之前因为做过出队操作,导致会有空缺。这是size和capacity没有到达符合扩容或缩容的微妙条件,我们将tail转向数组的头部。



此时,我们元素所位于的并不是它们的绝对位置,而是相对位置 i%data.length。

public class LoopQueue<E> implements Queue<E>{

    private E[] data;
    private int front, tail;
    private int size;

    public LoopQueue(int capcacity){
        //容量+1是给tail预留空间
        data = (E[])new Object[capcacity+1];
        front = 0;
        tail = 0;
        size = 0;
    }

    public LoopQueue(){
        this(10);
    }

    public int getCapacity(){ return data.length-1;}

    @Override
    public int getSize() {
        return size;
    }

    @Override
    public boolean isEmpty() {
        return size == 0;
    }

    @Override
    public void enqueue(E e) {
        if ((tail + 1) % data.length == front){
            //此时fronttail之间只差一个预留空位,说明空间满了
            resize(2*getCapacity());
        }

        data[tail] = e;
        //tail指针相对向后移动一位
        tail = (tail + 1) % data.length;
        size++;
    }

    @Override
    public E dequeue() {
        if (isEmpty()){
            throw new IllegalArgumentException("can not dequeue. queue is empty");
        }

        E ret = data[front];
        data[front] = null;
        front = (front+1) % data.length;
        size--;

        if (size == getCapacity() / 4 && getCapacity() / 2 != 0){
            resize(getCapacity() / 2);
        }
        return ret;
    }

    @Override
    public E getFront() {
        if (isEmpty()){
            throw new IllegalArgumentException("queue is empty");
        }
        return data[front];
    }

    private void resize(int newCapacity){
        E[] newData = (E[])new Object[newCapacity];

        for (int i = 0; i < size; i++){
            newData[i] = data[front % data.length + i];
        }

        data = newData;
        front = 0;
        tail = size;
    }

    //测试真实位置
    public void realStation(){
        for (int i = 0; i <= getCapacity(); i++){
            System.out.print(data[i] + "\t");
        }
    }

    @Override
    public String toString(){

        StringBuilder res = new StringBuilder();
        res.append(String.format("Queue: size = %d , capacity = %d\n", size, getCapacity()));
        res.append("front [");
        for(int i = front ; i != tail ; i = (i + 1) % data.length){
            res.append(data[i]);
            if((i + 1) % data.length != tail)
                res.append(", ");
        }
        res.append("] tail");
        return res.toString();
    }

    public static void main(String[] args) {
        LoopQueue<Integer> loopQueue = new LoopQueue<>();

        for (int i = 0; i < 3; i++){
            loopQueue.enqueue(i);
        }

        loopQueue.dequeue();
        loopQueue.enqueue(5);
        loopQueue.enqueue(7);
        loopQueue.dequeue();
        loopQueue.enqueue(10);
        System.out.println(loopQueue.toString());
        loopQueue.realStation();
    }
}
Queue: size = 4 , capacity = 4
front [2, 5, 7, 10] tail

null 2 5 7 10


此时,在不需要改变容量的情况下,出队和入队时间复杂度为O(1)




基于链表的队列

注:链表的实现就是不断地在其头部添加新的节点,所以删除头部时的速度最快,为O(1),而删除尾部需要全部遍历,为O(n),但是队列的实现方式就是在链表头部添加,在尾部删除。所以,在这里我们重新用链表的形式写了一个queue。它拥有一个head和一个tail节点,以指针的形式分别指向链表的头部和尾部。这样使enqueue和dequeue的操作更加明显。

public class LinkedListQueue<E> implements Queue<E>{

    LinkedList<E> linkedList = new LinkedList<>();

    private class Node{
        public E e;
        public Node next;

        public Node(E e, Node next){
            this.e = e;
            this.next = next;
        }

        public Node(E e){ this(e, null);}

        public Node(){ this(null, null);}

        @Override
        public String toString(){ return e.toString();}
    }

    private Node head, tail;
    private int size;



    @Override
    public int getSize() {
        return size;
    }

    @Override
    public boolean isEmpty() {
        return size == 0;
    }

    @Override
    public void enqueue(E e) {
        if (tail == null){
            tail = new Node(e);
            head = tail;
        }else{
            tail.next = new Node(e);
            tail = tail.next;

            //万万不可写成
            //tail = new Node(e);
            //因为tailqueue的一部分,只有先next一个新节点,使得新节点与queue连接上,才能将tail重新
            //设置,记住,tailhead是具有指针功能
        }

        size++;
    }

    @Override
    public E dequeue() {
        if (isEmpty()){
            throw new IllegalArgumentException("can not dequeue. queue is empty");
        }

        Node retNode = head;
        head = head.next;
        if (head == null){
            tail = null;
        }
        size--;
        return retNode.e;
    }

    @Override
    public E getFront() {
        if (isEmpty()){
            throw new IllegalArgumentException("queue is empty");
        }
        return head.e;
    }

    @Override
    public String toString(){
        StringBuilder res = new StringBuilder();
        res.append("Queue: front[");
        Node cur = head;

        while (cur != null){
            res.append(cur.e + "->");
            cur = cur.next;
        }
        res.append("] null tail");
        return res.toString();
    }

    public static void main(String[] args) {
        LinkedListQueue<Integer> linkedListQueue = new LinkedListQueue<>();
        for (int i = 0; i < 10; i++){
            linkedListQueue.enqueue(i);
        }

        System.out.println(linkedListQueue.toString());
    }
}

Queue: front[0->1->2->3->4->5->6->7->8->9->] null tail


此时,我们可以看出在enqueue和dequeue过程中,我们只需要将head和tail改变即可,不需要再遍历时间复杂度均为O(1)



阅读更多
上一篇数据结构(基于java语言描述)--栈
下一篇数据结构(java语言描述)--Trie字典树
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

关闭
关闭
关闭