基于混沌理论的混沌时间序列的定性与定量分析-图文结果展示-附代码

本文介绍了如何使用混沌理论和混沌2.0工具箱在MATLAB上进行混沌序列的识别和分析。通过二维相图展示混沌奇异吸引子进行定性识别,再用饱和关联维数法进行定量分析,揭示混沌序列的特性。此外,还提及了基于最大Lyapunov指数的混沌时间序列预测方法,并提供了相关MATLAB代码资源。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

本文是基于混沌理论,利用混沌2.0工具箱,在MATLAB上进行计算,感谢原作者的努力奉献,参考文献另附。

以X变量的时间序列为研究对象,进行时空演变分析,通过定性与定量进行识别

  1. 定性分析以二维相图法,绘制出混沌奇异吸引子,进行特异性识别。

 

 结果如上图,此混沌序列为单吸引子,可见相轨迹均存在着一个以单个吸引子为中心的吸引域,各相点的运动不断回复、折叠,不断地靠近和远离吸引域,这表明它们均存在着混沌特性。

  1. 定量分析采用饱和关联维数法进行定量识别

 绘制不同嵌入维数条件下的lnr0-lnC(r)关系图,从图中可以直观地看到,若lnr0与lnC(r)的曲线中包含一部分直线,那么这条直线的斜率就称之为关联维数dm,如果时间序列中存在奇异吸引子,那么随着嵌入维数m的增加,关联维数dm也会增加,当关联维数增加到一定值以后,得到的饱和值D即时间序列的饱和关联维数。

饱和关联维数dm越大,混沌特性就越强;饱和关联维数越小,混沌特性就越弱。

 以上是混沌序列的识别阶段

混沌理论也可以进行时间序列的预测(如基于最大Lyapunov指数的预测方法)

感兴趣的可以用代码包试一试
混沌计算MATLAB代码icon-default.png?t=M0H8https://download.csdn.net/download/qq_29216209/79087380

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

小童123

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值