本文是基于混沌理论,利用混沌2.0工具箱,在MATLAB上进行计算,感谢原作者的努力奉献,参考文献另附。
以X变量的时间序列为研究对象,进行时空演变分析,通过定性与定量进行识别。
- 定性分析以二维相图法,绘制出混沌奇异吸引子,进行特异性识别。
结果如上图,此混沌序列为单吸引子,可见相轨迹均存在着一个以单个吸引子为中心的吸引域,各相点的运动不断回复、折叠,不断地靠近和远离吸引域,这表明它们均存在着混沌特性。
- 定量分析采用饱和关联维数法进行定量识别
绘制不同嵌入维数条件下的lnr0-lnC(r)关系图,从图中可以直观地看到,若lnr0与lnC(r)的曲线中包含一部分直线,那么这条直线的斜率就称之为关联维数dm,如果时间序列中存在奇异吸引子,那么随着嵌入维数m的增加,关联维数dm也会增加,当关联维数增加到一定值以后,得到的饱和值D即时间序列的饱和关联维数。
饱和关联维数dm越大,混沌特性就越强;饱和关联维数越小,混沌特性就越弱。
以上是混沌序列的识别阶段
混沌理论也可以进行时间序列的预测(如基于最大Lyapunov指数的预测方法)
感兴趣的可以用代码包试一试
混沌计算MATLAB代码https://download.csdn.net/download/qq_29216209/79087380