7搜索管理

7搜索管理

7.1 准备环境

7.1.1 创建映射

创建xc_course索引库。

创建如下映射

post:http://localhost:9200/xc_course/doc/_mapping

参考 “资料”–》搜索测试-初始化数据.txt

{ 
    "properties": { 
        "description": { 
            "type": "text",
            "analyzer": "ik_max_word",
            "search_analyzer": "ik_smart" 
        },
        "name": { 
            "type": "text", 
            "analyzer": "ik_max_word", 
            "search_analyzer": "ik_smart" 
        },
        "pic":{ 
            "type":"text", 
            "index":false 
        }, 
        "price": { 
            "type": "float" 
        },
        "studymodel": { 
            "type": "keyword" 
        },
        "timestamp": { 
            "type": "date", 
            "format": "yyyy‐MM‐dd HH:mm:ss||yyyy‐MM‐dd||epoch_millis" 
        } 
    } 
}

7.1.2 插入原始数据

向xc_course/doc中插入以下数据:

参考 “资料”–》搜索测试-初始化数据.txt

http://localhost:9200/xc_course/doc/1 

{
    "name": "Bootstrap开发", 
    "description": "Bootstrap是由Twitter推出的一个前台页面开发框架,是一个非常流行的开发框架,此框架集成了 多种页面效果。此开发框架包含了大量的CSS、JS程序代码,可以帮助开发者(尤其是不擅长页面开发的程序人员)轻松 的实现一个不受浏览器限制的精美界面效果。", 
    "studymodel": "201002", 
    "price":38.6, 
    "timestamp":"2018‐04‐25 19:11:35", 		
    "pic":"group1/M00/00/00/wKhlQFs6RCeAY0pHAAJx5ZjNDEM428.jpg" 
}

http://localhost:9200/xc_course/doc/2 

{
    "name": "java编程基础",
    "description": "java语言是世界第一编程语言,在软件开发领域使用人数最多。",
    "studymodel": "201001", 
    "price":68.6, 
    "timestamp":"2018‐03‐25 19:11:35", 
    "pic":"group1/M00/00/00/wKhlQFs6RCeAY0pHAAJx5ZjNDEM428.jpg" 
}

http://localhost:9200/xc_course/doc/3 

{
    "name": "spring开发基础", 
    "description": "spring 在java领域非常流行,java程序员都在用。",
    "studymodel": "201001",
    "price":88.6, 
    "timestamp":"2018‐02‐24 19:11:35", 
    "pic":"group1/M00/00/00/wKhlQFs6RCeAY0pHAAJx5ZjNDEM428.jpg" 
}

7.1.3 简单搜索

简单搜索就是通过url进行查询,以get方式请求ES。

格式:get …/_search?q=…

q:搜索字符串。

例子:

?q=name:spring 搜索name中包括spring的文档。

7.3 DSL搜索

DSL(Domain Specifific Language)是ES提出的基于json的搜索方式,在搜索时传入特定的json格式的数据来完成不同的搜索需求。

DSL比URI搜索方式功能强大,在项目中建议使用DSL方式来完成搜索。

7.3.1 查询所有文档

查询所有索引库的文档。

发送:post http://localhost:9200/_search

查询指定索引库指定类型下的文档。(通过使用此方法)

发送:post http://localhost:9200/xc_course/doc/_search

{ "query": { "match_all": {} },"_source" : ["name","studymodel"] }

_source:source源过虑设置,指定结果中所包括的字段有哪些。

image-20210128204249120

结果说明:

took:本次操作花费的时间,单位为毫秒。

timed_out:请求是否超时

_shards:说明本次操作共搜索了哪些分片

hits:搜索命中的记录

hits.total : 符合条件的文档总数 hits.hits :匹配度较高的前N个文档

hits.max_score:文档匹配得分,这里为最高分

_score:每个文档都有一个匹配度得分,按照降序排列。

_source:显示了文档的原始内容。

JavaClient:

@SpringBootTest 
@RunWith(SpringRunner.class) 
public class TestSearch { 
    @Autowired 
    RestHighLevelClient client; 
    @Autowired 
    RestClient restClient; 
    //搜索type下的全部记录
    @Test
    public void testSearchAll() throws IOException, ParseException {
        //搜索请求对象
        SearchRequest searchRequest = new SearchRequest("xc_course");
        //指定类型
        searchRequest.types("doc");
        //搜索源构建对象
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();
        //搜索方式
        //matchAllQuery搜索全部
        searchSourceBuilder.query(QueryBuilders.matchAllQuery());
        //设置源字段过虑,第一个参数结果集包括哪些字段,第二个参数表示结果集不包括哪些字段
        searchSourceBuilder.fetchSource(new String[]{"name","studymodel","price","timestamp"},new String[]{});
        //向搜索请求对象中设置搜索源
        searchRequest.source(searchSourceBuilder);
        //执行搜索,向ES发起http请求
        SearchResponse searchResponse = client.search(searchRequest);
        //搜索结果
        SearchHits hits = searchResponse.getHits();
        //匹配到的总记录数
        long totalHits = hits.getTotalHits();
        //得到匹配度高的文档
        SearchHit[] searchHits = hits.getHits();
        //日期格式化对象
        SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
        for(SearchHit hit:searchHits){
            //文档的主键
            String id = hit.getId();
            //源文档内容
            Map<String, Object> sourceAsMap = hit.getSourceAsMap();
            String name = (String) sourceAsMap.get("name");
            //由于前边设置了源文档字段过虑,这时description是取不到的
            String description = (String) sourceAsMap.get("description");
            //学习模式
            String studymodel = (String) sourceAsMap.get("studymodel");
            //价格
            Double price = (Double) sourceAsMap.get("price");
            //日期
            Date timestamp = dateFormat.parse((String) sourceAsMap.get("timestamp"));
            System.out.println(name);
            System.out.println(studymodel);
            System.out.println(description);
        }
    }
} 

7.3.2 分页查询

ES支持分页查询,传入两个参数:from和size。

form:表示起始文档的下标,从0开始。

size:查询的文档数量。

发送:post http://localhost:9200/xc_course/doc/_search

{"from" : 0, "size" : 1, "query": { "match_all": {} }, "_source" : ["name","studymodel"] }

JavaClient

SearchRequest searchRequest = new SearchRequest("xc_course"); 
searchRequest.types("xc_course"); 
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); 
searchSourceBuilder.query(QueryBuilders.matchAllQuery()); 
//分页查询,设置起始下标,从0开始 
searchSourceBuilder.from(0); 
//每页显示个数 
searchSourceBuilder.size(10); 
//source源字段过虑 
searchSourceBuilder.fetchSource(new String[]{"name","studymodel"}, new String[]{}); 
searchRequest.source(searchSourceBuilder); 
SearchResponse searchResponse = client.search(searchRequest); 

7.3.3 Term Query

Term Query为精确查询,在搜索时会整体匹配关键字,不再将关键字分词。

发送:post http://localhost:9200/xc_course/doc/_search

{ "query": { "term" : { "name": "spring" } },"_source" : ["name","studymodel"] }

上边的搜索会查询name包括“spring”这个词的文档。

JavaClient:

SearchRequest searchRequest = new SearchRequest("xc_course"); 
searchRequest.types("xc_course"); 
SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); 
searchSourceBuilder.query(QueryBuilders.termQuery("name","spring")); 
//source源字段过虑 
searchSourceBuilder.fetchSource(new String[]{"name","studymodel"}, new String[]{}); 
searchRequest.source(searchSourceBuilder); 
SearchResponse searchResponse = client.search(searchRequest); 

7.3.4 根据id精确匹配

ES提供根据多个id值匹配的方法:

测试:

post: http://127.0.0.1:9200/xc_course/doc/_search

{ "query": { "ids" : { "type" : "doc", "values" : ["3", "4", "100"] } } }

JavaClient:

String[] split = new String[]{"1","2"}; 
List<String> idList = Arrays.asList(split); 
searchSourceBuilder.query(QueryBuilders.termsQuery("_id", idList)); 

7.3.5 match Query

1、基本使用

match Query即全文检索,它的搜索方式是先将搜索字符串分词,再使用各各词条从索引中搜索。

match query与Term query区别是match query在搜索前先将搜索关键字分词,再拿各各词语去索引中搜索。

发送:post http://localhost:9200/xc_course/doc/_search

{ "query": { "match" : { "description" : { "query" : "spring开发", "operator" : "or" } } } }

query:搜索的关键字,对于英文关键字如果有多个单词则中间要用半角逗号分隔,而对于中文关键字中间可以用

逗号分隔也可以不用。

operator:or 表示 只要有一个词在文档中出现则就符合条件,and表示每个词都在文档中出现则才符合条件。

上边的搜索的执行过程是:

1、将“spring开发”分词,分为spring、开发两个词

2、再使用spring和开发两个词去匹配索引中搜索。

3、由于设置了operator为or,只要有一个词匹配成功则就返回该文档。

JavaClient:

    //MatchQuery
    @Test
    public void testMatchQuery() throws IOException, ParseException {
        //搜索请求对象
        SearchRequest searchRequest = new SearchRequest("xc_course");
        //指定类型
        searchRequest.types("doc");
        //搜索源构建对象
        SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder();

        //搜索方式
        //MatchQuery
        searchSourceBuilder.query(QueryBuilders.matchQuery("description","spring开发框架").operator(Operator.OR));
        //设置源字段过虑,第一个参数结果集包括哪些字段,第二个参数表示结果集不包括哪些字段
        searchSourceBuilder.fetchSource(new String[]{"name","studymodel","price","timestamp"},new String[]{});
        //向搜索请求对象中设置搜索源
        searchRequest.source(searchSourceBuilder);
        //执行搜索,向ES发起http请求
        SearchResponse searchResponse = client.search(searchRequest);
        //搜索结果
        SearchHits hits = searchResponse.getHits();
        //匹配到的总记录数
        long totalHits = hits.getTotalHits();
        //得到匹配度高的文档
        SearchHit[] searchHits = hits.getHits();
        //日期格式化对象
        SimpleDateFormat dateFormat = new SimpleDateFormat("yyyy-MM-dd HH:mm:ss");
        for(SearchHit hit:searchHits){
            //文档的主键
            String id = hit.getId();
            //源文档内容
            Map<String, Object> sourceAsMap = hit.getSourceAsMap();
            String name = (String) sourceAsMap.get("name");
            //由于前边设置了源文档字段过虑,这时description是取不到的
            String description = (String) sourceAsMap.get("description");
            //学习模式
            String studymodel = (String) sourceAsMap.get("studymodel");
            //价格
            Double price = (Double) sourceAsMap.get("price");
            //日期
            Date timestamp = dateFormat.parse((String) sourceAsMap.get("timestamp"));
            System.out.println(name);
            System.out.println(studymodel);
            System.out.println(description);
        }
    }

2、minimum_should_match

上边使用的operator = or表示只要有一个词匹配上就得分,如果实现三个词至少有两个词匹配如何实现?

使用minimum_should_match可以指定文档匹配词的占比:

比如搜索语句如下:

{ "query": { "match" : { "description" : { "query" : "spring开发框架", "minimum_should_match": "80%" } } } }

“spring开发框架”会被分为三个词:spring、开发、框架

设置"minimum_should_match": "80%"表示,三个词在文档的匹配占比为80%,即3*0.8=2.4,向上取整得2,表

示至少有两个词在文档中要匹配成功。

对应的RestClient如下:

//匹配关键字 
searchSourceBuilder.query(QueryBuilders.matchQuery("description","spring开发框架")
                .minimumShouldMatch("80%"));

7.3.6 multiQuery

上边学习的termQuery和matchQuery一次只能匹配一个Field,本节学习multiQuery,一次可以匹配多个字段。

1、基本使用

单项匹配是在一个field中去匹配,多项匹配是拿关键字去多个Field中匹配。

例子:

发送:post http://localhost:9200/xc_course/doc/_search

拿关键字 “spring css”去匹配name 和description字段。

{ "query": { "multi_match" : { "query" : "spring css", "minimum_should_match": "50%", "fields": [ "name", "description" ] }} }

2、提升boost

匹配多个字段时可以提升字段的boost(权重)来提高得分

例子:

提升boost之前,执行下边的查询:

{ "query": { "multi_match" : { "query" : "spring框架", "minimum_should_match": "50%", "fields": [ "name", "description" ] }} }

通过查询发现Bootstrap排在前边。

提升boost,通常关键字匹配上name的权重要比匹配上description的权重高,这里可以对name的权重提升。

{ "query": { "multi_match" : { "query" : "spring框架", "minimum_should_match": "50%", "fields": [ "name^10", "description" ] }} }

“name^10” 表示权重提升10倍,执行上边的查询,发现name中包括spring关键字的文档排在前边。

JavaClient:

MultiMatchQueryBuilder multiMatchQueryBuilder = QueryBuilders.multiMatchQuery("spring框架", "name", "description") .minimumShouldMatch("50%"); 
multiMatchQueryBuilder.field("name",10);//提升boost 

7.3.7 布尔查询

布尔查询对应于Lucene的BooleanQuery查询,实现将多个查询组合起来。

三个参数:

must:文档必须匹配must所包括的查询条件,相当于 “AND” should:文档应该匹配should所包括的查询条件其

中的一个或多个,相当于 “OR” must_not:文档不能匹配must_not所包括的该查询条件,相当于“NOT”

分别使用must、should、must_not测试下边的查询:

发送:POST http://localhost:9200/xc_course/doc/_search

{ "_source" : [ "name", "studymodel", "description"], "from" : 0, "size" : 1, "query": { "bool" : { "must":[{ "multi_match" : { "query" : "spring框架", "minimum_should_match": "50%", "fields": [ "name^10", "description" ] }},{ "term":{"studymodel" : "201001" } } ] } } }

must:表示必须,多个查询条件必须都满足。(通常使用must)

should:表示或者,多个查询条件只要有一个满足即可。

must_not:表示非。

JavaClient:

//BoolQuery,将搜索关键字分词,拿分词去索引库搜索 
@Test 
public void testBoolQuery() throws IOException { 
    //创建搜索请求对象 
    SearchRequest searchRequest= new SearchRequest("xc_course"); 
    searchRequest.types("doc"); 
    //创建搜索源配置对象 
    SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); 
    searchSourceBuilder.fetchSource(new String[]{"name","pic","studymodel"},new String[]{}); 
    //multiQuery 
    String keyword = "spring开发框架"; 
    MultiMatchQueryBuilder multiMatchQueryBuilder = QueryBuilders.multiMatchQuery("spring框架", 
    "name", "description") 
    .minimumShouldMatch("50%"); 
    multiMatchQueryBuilder.field("name",10); 
    //TermQuery 
    TermQueryBuilder termQueryBuilder = QueryBuilders.termQuery("studymodel", "201001");
    //布尔查询 
    BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery(); 
    boolQueryBuilder.must(multiMatchQueryBuilder); 
    boolQueryBuilder.must(termQueryBuilder); 
    //设置布尔查询对象 
    searchSourceBuilder.query(boolQueryBuilder); 
    searchRequest.source(searchSourceBuilder);//设置搜索源配置 
    SearchResponse searchResponse = client.search(searchRequest); 
    SearchHits hits = searchResponse.getHits(); 
    SearchHit[] searchHits = hits.getHits(); 
    for(SearchHit hit:searchHits){ 
        Map<String, Object> sourceAsMap = hit.getSourceAsMap(); 
        System.out.println(sourceAsMap); 
    } 
} 

7.3.8 过虑器

过虑是针对搜索的结果进行过虑,过虑器主要判断的是文档是否匹配,不去计算和判断文档的匹配度得分,所以过

虑器性能比查询要高,且方便缓存,推荐尽量使用过虑器去实现查询或者过虑器和查询共同使用。

过虑器在布尔查询中使用,下边是在搜索结果的基础上进行过虑:

{ "_source" : [ "name", "studymodel", "description","price"], "query": { "bool" : { "must":[{ "multi_match" : { "query" : "spring框架", "minimum_should_match": "50%", "fields": [ "name^10", "description" ] }} ],"filter": [ { "term": { "studymodel": "201001" }}, { "range": { "price": { "gte": 60 ,"lte" : 100}}} ] } } }

range:范围过虑,保留大于等于60 并且小于等于100的记录。

term:项匹配过虑,保留studymodel等于"201001"的记录。

注意:range和term一次只能对一个Field设置范围过虑。

client:

//布尔查询使用过虑器 
@Test 
public void testFilter() throws IOException { 
    SearchRequest searchRequest = new SearchRequest("xc_course"); 
    searchRequest.types("doc"); 
    SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); 
    //source源字段过虑 
    searchSourceBuilder.fetchSource(new String[]{"name","studymodel","price","description"}, 
    new String[]{}); 
    searchRequest.source(searchSourceBuilder); 
    //匹配关键字 
    MultiMatchQueryBuilder multiMatchQueryBuilder = QueryBuilders.multiMatchQuery("spring框 
    架", "name", "description"); 
    //设置匹配占比 
    multiMatchQueryBuilder.minimumShouldMatch("50%"); 
    //提升另个字段的Boost值 
    multiMatchQueryBuilder.field("name",10); 
    searchSourceBuilder.query(multiMatchQueryBuilder); 
    //布尔查询 
    BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery(); 
    boolQueryBuilder.must(searchSourceBuilder.query()); 
    //过虑 
    boolQueryBuilder.filter(QueryBuilders.termQuery("studymodel", "201001")); 
    boolQueryBuilder.filter(QueryBuilders.rangeQuery("price").gte(60).lte(100)); 
    SearchResponse searchResponse = client.search(searchRequest); 
    SearchHits hits = searchResponse.getHits(); 
    SearchHit[] searchHits = hits.getHits(); 
    for (SearchHit hit : searchHits) { 
        String index = hit.getIndex(); 
        String type = hit.getType(); 
        String id = hit.getId(); 
        float score = hit.getScore(); 
        String sourceAsString = hit.getSourceAsString(); 
        Map<String, Object> sourceAsMap = hit.getSourceAsMap(); 
        String name = (String) sourceAsMap.get("name"); 
        String studymodel = (String) sourceAsMap.get("studymodel"); 
        String description = (String) sourceAsMap.get("description"); 
        System.out.println(name); 
        System.out.println(studymodel); 
        System.out.println(description); 
    }
}

7.3.9 排序

可以在字段上添加一个或多个排序,支持在keyword、date、flfloat等类型上添加,text类型的字段上不允许添加排 序。

发送 POST http://localhost:9200/xc_course/doc/_search

过虑0–10元价格范围的文档,并且对结果进行排序,先按studymodel降序,再按价格升序

{ "_source" : [ "name", "studymodel", "description","price"], "query": { "bool" : { "filter": [ { "range": { "price": { "gte": 0 ,"lte" : 100}}} ] } }, "sort" : [ {"studymodel" : "desc" }, { "price" : "asc" } ] }

client:

@Test
public void testSort() throws IOException { 
    SearchRequest searchRequest = new SearchRequest("xc_course"); 
    searchRequest.types("doc"); 
    SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); 
    //source源字段过虑 
    searchSourceBuilder.fetchSource(new String[]{"name","studymodel","price","description"}, 
    new String[]{}); 
    searchRequest.source(searchSourceBuilder); 
    //布尔查询 
    BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery(); 
    //过虑 
    boolQueryBuilder.filter(QueryBuilders.rangeQuery("price").gte(0).lte(100));
    //排序 
    searchSourceBuilder.sort(new FieldSortBuilder("studymodel").order(SortOrder.DESC)); 
    searchSourceBuilder.sort(new FieldSortBuilder("price").order(SortOrder.ASC)); 
    SearchResponse searchResponse = client.search(searchRequest); 
    SearchHits hits = searchResponse.getHits(); 
    SearchHit[] searchHits = hits.getHits(); 
    for (SearchHit hit : searchHits) { 
        String index = hit.getIndex(); 
        String type = hit.getType(); 
        String id = hit.getId(); 
        float score = hit.getScore(); 
        String sourceAsString = hit.getSourceAsString(); 
        Map<String, Object> sourceAsMap = hit.getSourceAsMap(); 
        String name = (String) sourceAsMap.get("name"); 
        String studymodel = (String) sourceAsMap.get("studymodel"); 
        String description = (String) sourceAsMap.get("description"); 
        System.out.println(name); 
        System.out.println(studymodel); 
        System.out.println(description); 
    } 
} 

7.3.10 高亮显示

高亮显示可以将搜索结果一个或多个字突出显示,以便向用户展示匹配关键字的位置。

在搜索语句中添加highlight即可实现,如下:

Post: http://127.0.0.1:9200/xc_course/doc/_search

{ "_source" : [ "name", "studymodel", "description","price"], "query": { "bool" : { "must":[{ "multi_match" : { "query" : "开发框架", "minimum_should_match": "50%", "fields": [ "name^10", "description" ], "type":"best_fields" }} ],"filter": [ { "range": { "price": { "gte": 0 ,"lte" : 100}}} ] } }, "sort" : [{ "price" : "asc" } ],"highlight": { "pre_tags": ["<tag1>"], "post_tags": ["</tag2>"], "fields": { "name": {}, "description":{} } } }

client代码如下:

@Test
public void testHighlight() throws IOException { 
    SearchRequest searchRequest = new SearchRequest("xc_course"); 
    searchRequest.types("doc"); 
    SearchSourceBuilder searchSourceBuilder = new SearchSourceBuilder(); 
    //source源字段过虑 
    searchSourceBuilder.fetchSource(new String[]{"name","studymodel","price","description"}, 
    new String[]{}); 
    searchRequest.source(searchSourceBuilder); 
    //匹配关键字 
    MultiMatchQueryBuilder multiMatchQueryBuilder = QueryBuilders.multiMatchQuery("开发", 
    "name", "description"); 
    searchSourceBuilder.query(multiMatchQueryBuilder); 
    //布尔查询 
    BoolQueryBuilder boolQueryBuilder = QueryBuilders.boolQuery(); 
    boolQueryBuilder.must(searchSourceBuilder.query()); 
    //过虑 
    boolQueryBuilder.filter(QueryBuilders.rangeQuery("price").gte(0).lte(100)); 
    //排序 
    searchSourceBuilder.sort(new FieldSortBuilder("studymodel").order(SortOrder.DESC)); 
    searchSourceBuilder.sort(new FieldSortBuilder("price").order(SortOrder.ASC)); 
    //高亮设置 
    HighlightBuilder highlightBuilder = new HighlightBuilder(); 
    highlightBuilder.preTags("<tag>");//设置前缀 
    highlightBuilder.postTags("</tag>");//设置后缀 
    // 设置高亮字段 
    highlightBuilder.fields().add(new HighlightBuilder.Field("name")); 
    // highlightBuilder.fields().add(new HighlightBuilder.Field("description")); 
    searchSourceBuilder.highlighter(highlightBuilder); 
    SearchResponse searchResponse = client.search(searchRequest);
    SearchHits hits = searchResponse.getHits(); 
    SearchHit[] searchHits = hits.getHits(); 
    for (SearchHit hit : searchHits) { 
        Map<String, Object> sourceAsMap = hit.getSourceAsMap(); 
        //名称 
        String name = (String) sourceAsMap.get("name"); 
        //取出高亮字段内容 
        Map<String, HighlightField> highlightFields = hit.getHighlightFields(); 
        if(highlightFields!=null){ 
            HighlightField nameField = highlightFields.get("name"); 
            if(nameField!=null){ 
                Text[] fragments = nameField.getFragments(); 
                StringBuffer stringBuffer = new StringBuffer(); 
                for (Text str : fragments) { 
                	stringBuffer.append(str.string()); 
           	}
            name = stringBuffer.toString(); 
        } 
    }
    String index = hit.getIndex(); 
    String type = hit.getType(); 
    String id = hit.getId(); 
    float score = hit.getScore(); 
    String sourceAsString = hit.getSourceAsString(); 
    String studymodel = (String) sourceAsMap.get("studymodel"); 
    String description = (String) sourceAsMap.get("description"); 
    System.out.println(name); 
    System.out.println(studymodel); 
    System.out.println(description); 
    } 
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值