《DetNet: A Backbone network for Object Detection》论文阅读

一般而言,目标检测当中使用的backbone都是应用在图像分类中的,但是目标检测和图像分类有所不同,也就是说图像分类与物体检测任务之间存在落差,这种落差在我的理解是分类网络会只将图形分为一类,因此不断地下采样,但是目标检测任务会让单个图片包含多个目标,如果继续使用图像分类的backbone,就会丢失小目标的信息
图像分类与物体检测任务之间存在的落差会产生两个问题:
1.为了完成检测任务需要增加额外的层。
2.分类网络的大量下采样丢失了小目标的位置信息。

1、动机

最近的目标检测器通常依赖于在ImageNet类数据集上预先训练的主干网络。由于ImageNet分类的任务与对象检测不同,对象检测不仅需要识别对象的类别,而且需要对边界框进行空间定位。在VGG16、Resnet等标准网络中,由于特征图的空间分辨率逐渐降低,图像分类的设计原则不利于定位任务。利用图1 A所示的特征金字塔网(FPN)和膨胀等技术来保持网络的空间分辨率。然而,在使用这些骨干网络进行训练时,仍然存在以下三个问题。
(1)网络的stage不同:如图1B所示,典型的分类网络包括5个阶段,每个阶段通过汇聚2x或步长为2的卷积对特征图进行下采样。因此,输出的feature map空间大小是32x“子采样”。与传统的分类网络不同,特征金字塔检测器通常采用更多的级。例如,在Feature Pyramid Networks (FPN)中,添加了额外的阶段P6来处理较大的对象,而在RetinaNet中以类似的方式添加了P6、P7。显然,像P6这样的额外阶段在ImageNet数据集中没有经过预先训练。
(2)大物体的回归弱:在FPN等物体检测网络中,大物体是在比较深的特征图上预测(因为深的特征图对应原图的比例大,感受野大),然而由于特征图越深,物体边缘的清晰度就越模糊,就很难准确回归。
(3)在小分辨率特征图上小目标不可见:由于特征图的分辨率减少到原来的1/32,或者更小,小物体在上面是不可见的(32x32的物体在上面只有一个点),FPN等方法,使用分辨率大但是比较浅的层来解决这个问题,浅层通常只有低语义信息,这不利于识别对象实例的类别。FPN把浅层和语意信息强的深层相加,来提升浅层的语义表达能力,但是由于小物体已经在“深层”中消失,所以他们的语义信息也会丢失。

在这里插入图片描述
因此提出DetNet解决上面三个问题:
(1)stages的数量专门为目标检测设计。
(2)引入更多的stage(6-7),保持了特征图的分辨率的同时,也保证了感受野的大小。

2、网络设计

设计DetNet的问题:
(1)需要保持特征图的分辨率足够大,但这样会占用更多的内存和计算量。
(2)降低下采样因子,会让感受野变小,不利于物体类别识别。

网络设计基于resnet-50,前面四个stage相同,从第五个stage开始不同,细节如下:
(1)增加一个stage6,并从stage5开始保持16×的感受野。
(2)在stage5和stage6采用了 dilated bottleneck with 1x1 convolution projection。
(3)从stage4开始使用bottleneck with dilation 用于增加感受野,并且保持特征层维度为256不再改变,用于减少计算量。
在这里插入图片描述
整体的网络结构如下:
在这里插入图片描述

3、结果

在这里插入图片描述
在这里插入图片描述

  • 1
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: Swin Transformer 目标检测是一种基于 Swin Transformer 模型的目标检测算法。它采用了一种新的 Transformer 架构,能够在保持高精度的同时,大幅提高计算效率。该算法在 COCO 数据集上取得了 SOTA 的结果。 ### 回答2: Swin Transformer是一种基于Transformer架构的新型神经网络模型,在目标检测任务中表现出色。它的设计思路主要是通过分解高分辨率特征图的位置编码,将计算复杂度从O(N^2)降低到O(N),极大地提高了模型的计算效率。 Swin Transformer在目标检测任务上的应用主要通过两个关键方面来进行:Swin Transformer Backbone和Swin Transformer FPN。 Swin Transformer Backbone是指将Swin Transformer应用于骨干网络的部分。传统的目标检测模型通常使用ResNet或者EfficientNet等CNN架构作为骨干网络,而Swin Transformer通过将Transformer的自注意力机制应用于骨干网络中,使得模型可以更好地学习到不同尺度和位置的特征信息。 Swin Transformer FPN则是指利用Swin Transformer模型中的特征金字塔网络(Feature Pyramid Network)来进行目标检测。特征金字塔网络通过将不同层次的特征图进行融合,使得模型可以同时获得高级语义信息和低级细节信息,从而提升目标检测的准确性和鲁棒性。 相比于传统的目标检测模型,Swin Transformer在计算效率和准确性上都有显著的提升。它不仅在COCO数据集上取得了当前最好的单模型性能,而且在推理速度上也优于其他同等性能的模型。因此,Swin Transformer在目标检测领域具有广泛的应用前景。 ### 回答3: Swin Transformer是一种基于Transformers的对象检测模型。它是在Transformer架构上进行了改进和优化,以适用于目标检测任务。 与传统的卷积神经网络不同,Swin Transformer使用的是一种局部注意力机制,它能够在图像中进行局部区域的特征提取和交互。这种局部注意力机制能够有效地减少计算复杂度,提升模型的性能。 Swin Transformer利用了一个分层的网络结构,其中每个层级都有多个Swin Transformer块。每个Swin Transformer块由两个子层组成,分别是局部窗口注意力机制子层和跨窗口注意力机制子层。局部窗口注意力机制子层用于提取特定区域的局部特征,而跨窗口注意力机制子层用于不同区域之间的特征交互。 在训练过程中,Swin Transformer还使用了分布式权重梯度传播算法,以加快训练速度。此外,Swin Transformer还采用了数据增强技术,如随机缩放和水平翻转,以提高模型的泛化能力。 实验证明,Swin Transformer在COCO数据集上取得了很好的性能,在目标检测任务上超过了传统的卷积神经网络模型。它在准确性和效率方面表现优异,对于大规模的对象检测任务具有很高的可扩展性。 总之,Swin Transformer是一种基于Transformers的对象检测模型,通过优化的局部注意力机制和分布式训练算法,能够在目标检测任务中取得出色的性能。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值