自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(35)
  • 收藏
  • 关注

转载 3DMM(人脸3D形变统计模型)

3DMM(人脸3D形变统计模型)1 3DMM方法介绍3DMM是一种较为基础的三维人脸统计模型,最早被提出是用于解决从二维人脸图像恢复三维形状的问题。在3DMM方法发展的二十年来,各位学者对其进行了数据扩展和深入研究,又由于神经网络广泛使用,使得3DMM参数优化得到简化,基于3DMM方法的三维重建文章层出不穷。但此类方法基于一组人脸形状和纹理的统计模型来表示任意一张人脸,仍然存在重建人脸判别性...

2020-05-07 12:11:20 17173

原创 论文笔记:Deep Neural Network Augmentation: Generating Faces for Affect Analysis

Deep Neural Network Augmentation: Generating Faces for Affect AnalysisDimitrios Kollias1 · Shiyang Cheng2 · Evangelos Ververas1 · Irene Kotsia3 · Stefanos Zafeiriou12020年2月发表摘要本文提出了一种综合面部表情的新方法。根据...

2020-05-07 10:25:14 1594 2

原创 目标检测中数据增强的方法——mixup:针对小样本

目标检测中数据增强的方法——mixup:针对小样本在样本量不足的情况下,我们通常会采用mixup或者填鸭式的方法来进行数据增强。其中mixup是将正负样本融合成新的一组样本,使得样本量翻倍。填鸭式是将原本样本里的目标抠出来,随机复制粘贴到其他地方。(个人理解)一下是mixup方法的代码示例import cv2import osimport randomimport numpy as n...

2020-04-26 16:46:21 4477 1

原创 目标检测中数据增强的方法——填鸭式:针对小样本

在样本量不足的情况下,我们通常会采用mixup或者填鸭式的方法来进行数据增强。其中mixup是将正负样本融合成新的一组样本,使得样本量翻倍。填鸭式是将原本样本里的目标抠出来,随机复制粘贴到其他地方。()...

2020-04-26 16:39:01 3004 3

原创 计算机视觉目标检测常用的一些评估指标

1.常用指标1)每个检测物体的分类准确度;2)预测框与真实框的重合度(IOU):如果设定IOU的阈值为0.5,当一个预测框与一个真实框的IOU值大于该阈值时,被判定为真阳(TP),反之被判定为假阳(FP)3)模型是否找到图片中的所有物体(召回,recall):如存在某些模型没有预测出的真实框称之为假阴(FN)。4)综合得到mAP:在PascalVOC中,mAP是各类别AP的平均,preci...

2020-04-24 15:59:57 4096 1

原创 二维目标检测实现和优化方向

Eg:backbone、IoU、损失函数、NMS、anchor、one shot learning/zero shot learning等。1.基于目标检测的backbone和特征提取目标检测的backbone一般基于ImageNet预训练的图像分类网络。图像分类问题只关注分类和感受视野,不用关注物体定位,但是目标检测领域同时很关注空间信息。如果**下采样过多,会导致最后的feature ma...

2020-04-24 15:53:53 685

原创 论文笔记:Light-Head R-CNN

这是旷视科技+清华大学在2017发布的一篇文章1.动机two-stage算法主要有两部分组成:(1)生成proposal(或说ROI)的过程(body)(2)基于proposal(ROI)的recognition过程(head)存在问题:为了提高精度,head部分一般都包含很大的计算量,如faster RCNN和R-FCN作者提出的解决方法:Light head(1)thin ...

2020-04-24 15:48:57 276

原创 论文笔记:GIou(Generalized Intersection over Union)

1.动机现在大多数改进方案都是从网络框架和backbone出发IoU1.黑框-bbox;绿框-groundtruth2.用右下角和左上角来表示bbox,即(x1,x2,y1,y2)3.相同的n-范数(如l2-norm)距离,不同的IoU阈值4.相同的IoU阈值,不同的w\h比例,具有不同的客观价值5.随着参数增加(比如旋转),复杂度也增加→引入anchor→在优化回归损耗和IoU...

2020-04-24 15:40:01 673

原创 论文笔记:DetNet:A Backbone network for Object Detection

1.动机一些检测器通常包含了额外的 stages,处理多尺度问题较大的下采样因子会使感受野增大,空间分辨率降低,利于分类,不利于定位传统的 backbone 大多是针对做分类的常见的backbone:①Image Net②AlexNet—为了减少计算量,增加有效的感受野,以32步长下采样 feature map③VGG Net—以3*3卷积,构建更深的网络,也是32 strid...

2020-04-24 15:31:35 351

原创 论文笔记:Region Proposal by Guided Anchoring

这是CVPR2019上的文章。现存目标检测器有anchor-based的,也是比较常用的检测器,比如two-stage的一系列检测器,还有anchor-free的,比如DenseNet,CornerNet。这篇论文又提出了一种新的生成anchor的方式,即不再预设anchor的尺寸,而是通过模型自身关于图像特征的参数反向传播去调整anchor大小和定位。采用的方案:1.Anchor gen...

2020-04-24 15:23:34 272

原创 DSSD:Deconvolutional Single Shot Detector 论文阅读笔记

1.动机2.贡献点特点:DSSD将SSD的VGG网络用Resnet-101进行了替换,在分类回归之前引入了残差模块,在SSD添加的辅助卷积层后又添加了反卷积层形成“宽 - 窄 - 宽”的“沙漏”结构。DSSD相比SSD的一个最大的提升在于对小目标的检测度上DSSD有了很大的提升。缺点:DSSD的检测速度相比SSD慢了很多,很大一部分原因在于引入的Resnet-101太深,同时也因为引入了额...

2020-04-23 21:19:19 356

原创 论文:Rich feature hierarchies for accurate object detection and semantic segmentation 个人笔记

这篇论文是2014 CVPR上的,是本人看的目标检测领域的第一篇论文,当时看的时候有很多不太理解的地方~1.动机2.贡献点

2020-04-23 21:10:50 154

原创 Cascade RCNN:Delving into High Quality Object Detection 论文阅读笔记

2019年看论文时,自己对论文的理解的一个总结。1.动机1.问题:IoU增加,检测性能反而下降2.原因:①过拟合;②最优IoU与假设IoU不匹配3.解决:级联R-CNN4.基础:RCNN两步检测模型(two stage detector)2.问题提出two-stage目标检测可以分成 分类+定位两部步:回顾Faster RCNN中:3.Cascade RCNN 网络3.1思路...

2020-04-23 20:58:13 184

原创 安装多版本cuda时,nvcc和cuda版本不一致问题怎么解决

在同时安装有多个版本的cuda时,常常会出现cuda版本和nvcc版本不一致的问题首先怎么看这两者的版本时候一致呢?1.查看nvcc的版本nvcc -V或者nvcc --version2.查看cuda版本nvidia-smi3.若两者不一致,可以改变系统环境变量中的cuda路径export PATH=/usr/local/cuda-8.0/bin:$PATHexport LD_...

2020-04-22 13:56:02 5911 3

原创 command ':/usr/local/cuda/bin/nvcc' failed with exit status 1

原因:报错的路径里面多了一个冒号,说明是环境变量的设置有问题1.export CUDA_HOME=$CUDA_HOME:/usr/local/cuda在终端,将上面的语句修改成:export CUDA_HOME=/usr/local/cuda然后运行exec $SHELL$rm -rf buildpython setup.py build develop2.直接打开系统文件v...

2020-04-22 13:49:57 5826 1

原创 Fatal Error: cuda_runtime.h: No such file or directory解决办法

fatal error: cuda_runtime.h: No such file or directory头文件找不到,可以尝试用locate/whereis命令找找这个文件在哪儿或者:conda install yamlsudo apt-get install nvidia-cuda-toolkitexport CPATH=/usr/local/cuda-10.1/targets/x...

2020-04-22 13:46:57 6276 2

原创 Error: command 'gcc' failed with exit status 1

这个Error好像有各种原因,我自己就碰到了好几次。以后慢慢记录下来1.原因:缺少包,需要安装yum解决:sudo apt-get install build-essentialsudo apt-get install yumsudo apt-get install python3-dev可能需要libevent库sudo apt-get install libevent-dev...

2020-04-22 13:44:46 513

原创 ImportError: No module named 'imgaug'怎么解决

没有这个模块,那就安装这个模块pip install git+https://github.com/aleju/imgaug

2020-04-22 13:40:34 1875

原创 Error:no module named cv2

Error:no module named cv2原因是环境中没有opencv安装opencv即可pip install opencv-python如果是在windows环境下装的,可能还需要将其添加到系统的环境变量中

2020-04-22 13:38:55 137

原创 ImportError:cannot import name cbook解决办法

ImportError:cannot import name cbook原因:matplotlib的版本与six的版本不一致解决:pip install six==1.10.0pip install matplotlib==2.0.2

2020-04-22 13:37:18 2712

原创 Value Error:need more than 8 values to unpack

Value Error:need more than 8 values to unpack运行脚本时提供的参数的个数不对

2020-04-22 13:35:20 593

原创 Import Error:dlopen:can not load any more object wih static TLS

Impoer Error:dlopen:can not load any more object wih static TLS解决方法:import torch 或者 torchvision 之前import了太多包把import torch 放到前面(内心:这个原因我也是没万万想到)...

2020-04-22 13:32:42 258

原创 undefined symbol:__cuda……

undefined symbol:__cuda……解决方法:①在出错文件夹下添加make.sh文件②保证编译pytorch的cuda版本与系统的cuda版本一致(例如:pytorch0.3.1对应Torchvision0.2.1对应cuda8.0)...

2020-04-22 13:29:29 1340

原创 dynamic module does not define module export function

dynamic module does not define module export function解决方法:在lib中的setup.py中将model.utils.cython_bbox改成model.utils.bbox;然后重新编译:sh make.sh;

2020-04-22 13:23:18 2629

原创 Import Error: ConfigParser

Import Error: ConfigParserpython2里的是ConfigParser但python3里是configparser

2020-04-22 12:45:05 170

原创 Runtime Error:cuda runtime error(2):out of memory at /……/torch/…….cu:66

在运行faster RCNN_pytorch的代码时碰到了这个问题,找到以下几种解决方法:1.减小batchsize如果是因为模型太大内存不够,减小bs就能解决2.Variable(x)改成Variable(x,volatile=True)3.在模型中预测部分的代码前面加入with torch.no_grad():...

2020-04-22 12:34:52 1849

原创 Conda 常用终端命令

Conda环境管理conda版本查看conda -Vconda --version conda更新conda update conda #更新condaconda update anaconda #更新anacondaconda update anaconda-navigator #update最新版本的anaconda-navigator ...

2020-04-21 21:33:44 551

原创 Linux如何安装并查看Pytorch、TensorFlow

安装并查看Pytorch、TensorFlow1.Pytorch1.1Linux环境下安装Pytorch​使用conda安装指定版本conda install pytorch=1.3.1 -c soumith使用pip安装指定版本pip install pytorch=1.3.11.2Linux环境下卸载Pytorchpip uninstall torch #pipconda u...

2020-04-21 21:24:35 2085

原创 如何安装NVIDIA驱动?

安装NVIDIA驱动#卸掉原来的NVIDIAsudo apt-get purge nvidia*#获取NVIDIAsudo add-apt-repository ppa:graphics-drivers/ppasudo apt-get updatesudo apt-get install nvidia-xxx nvidia-settings#重启sudo reboot#找不到的...

2020-04-21 21:12:17 181

原创 ubuntu系统下更新nvcc路径

更新nvcc路径export PATH=/usr/local/cuda/bin:$PATHexport LD_LIBRARY_PATH=/usr/local/cuda/lib64:$LD_LIBRARY_PATH

2020-04-21 21:09:20 4112

原创 linux系统terminal操作文件命令

linux系统terminal操作文件命令打开文件首先vi /etc/hosts打开hosts文件的阅读模式o键可进入编辑模式,并在当前位置的后面插入一行录入内容后,Esc键退出编辑模式进入阅读模式编辑模式命令:i 在当前位置插入a 在当前位置后追加o 在当前位置的后面插入一行I 在行头插入A 在行尾追加O 在当前位置的前面插入一行阅读模式命令::w 保存文件:w fi...

2020-04-21 21:07:24 861

原创 ubuntu系统查看nvcc、cudnn、cuda版本和版本切换

ubuntu系统查看nvcc/cudnn/cuda版本查看nvcc版本nvcc -Vnvcc --version查看cudnn 版本cat /usr/local/cuda/include/cudnn.h | grep CUDNN_MAJOR -A 2查看cuda 版本cat /usr/local/cuda/version.txtCuda多版本切换rm -rf /usr/local...

2020-04-21 21:00:45 3049 1

原创 ubuntu系统中安装/切换gcc版本

ubuntu系统中安装/切换gcc版本安装制定版本的gcc(以4.8为例)sudo apt-get install gcc-4.8 g++-4.8切换gcc版本sudo update-alternatives --install /usr/bin/gcc /usr/bin/gcc-4.8 50sudo update-alternatives --install /usr/bin/g++ ...

2020-04-21 20:49:30 531

原创 Linux系统和windows系统ssh命令

Linux系统和windows系统下的ssh命令ssh命令介绍ssh连接原理ssh工作机制ssh加密技术windows下如何使用ssh命令windows10自带opensshwindows无自带的opensshssh常见命令ssh常用功能ssh常见命令参数后台ssh服务的相关ssh免密设置ssh命令介绍ssh连接原理SSH的英文全称是Secure SHell。通过使用SSH,你可以把所有传输...

2020-04-16 15:57:00 2789 1

转载 国内计算机视觉CV方向的大牛/导师

国内计算机视觉CV方向的大牛/导师李航:http://research.microsoft.com/en-us/people/hangli/是MSRA Web Search and Mining Group高级研究员和主管,主要研究领域是信息检索,自然语言处理和统计学习。近年来,主要与人合作使用机器学习方法对信息检索中排序,相关性等问题的研究。曾在人大听过一场他的讲座,对实际应用的问题抽象,转...

2020-04-16 14:45:44 4679 1

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除