机器学习——线性回归和逻辑回归

一  线性回归    (本文是看cs229后自己的理解,不足之处,请多多指教,若想看详细的请找机器学习笔记和视频)

        线性回归就是先写出假设函数,然后找到代价函数(一般是平方求和),再对代价函数求偏导,得到了梯度,梯度负方向是下降速度最快的方向(梯度的方向是上升最快的方向)。求最小值就选择梯度的负方向进行迭代(最大值则选择梯度的方向进行迭代),再将\theta代入假设函数得到了线性回归函数。(1)批梯度在更新\theta的时候,用到了全部样本的数据来进行一次更新,即:\theta _{j}:=\theta _{j}+\alpha \sum _{i=1}^{m}\left ( y^{(i)} -h_{\theta }(x^{(i)}) 。(2)而随机梯度也就是增量梯度则只用到了一个样本的数据来更\theta的,即:\theta _{j}:=\theta _{j}+\alpha \left ( y^{(i)} -h_{\theta }(x^{(i)}),更新的时候,x^{(i)}是第i个训练数据,并且x^{(i)}是一个列向量,\theta _{j}也是一个列向量,每次迭代可以对全部的\theta更新。(3)最小二乘法估计:写出了平方损失函数后,直接对损失函数求导,得到最小值\theta,然后代入h\left ( \theta \right )即可,更新\theta =\left ( X^{T} \right X)^{-1}X^{T}Y,要求X必须是满秩的。

       为什么要选用误差的平方和作为平方损失函数呢?这是因为y^{(i)}满足了高斯分布,写出它的条件概率,由极大似然估计求得极值,当使平方和最小时,就求得了相应的\theta值。

     局部加权线性回归中的误差函数\sum _{i}\omega ^{(i)}(y^{(i)}-\theta ^{T}x^{(i)})^{2},其中\omega ^{(i)}=exp(\frac{-(x^{(i)}-x)^{2}}{2\tau ^{2}}),x为要预测数据的特征,对于线性回归算法,一旦拟合出适合训练数据的参数θ,保存这些参数θ,对于之后的预测,不需要再使用原始训练数据集,所以是参数学习算法。对于局部加权线性回归算法,每次进行预测都需要全部的训练数据(没有对全部的数据,只对预测周围的数据进行训练)(每次进行的预测得到不同的参数θ),没有固定的参数θ,所以是非参数算法。

二 逻辑回归

       逻辑回归的二分类问题,假设函数为h(\theta )=g(\theta ^{T}x)=\frac{1}{1+e^{-\theta^{T}x }},p(y|x;\theta )=h_{\theta }(x)^{y}(1-h_{\theta }(x)^{1-y}),然后求极大似然函数,求梯度,因为是最大化似然函数,所有是梯度上升的方向,就得到了更新\theta的结果。判断边界的确定,给一个阈值,就可以得到一个对应的signoid的b值,然后再将\theta _{T}X=b,就可以解出边界线了。在将任意一个预测值代入就可以发现是负样本还是正样本了。

        以前迭代的时候可以看作是得到极大似然估计后,利用梯度法来进行迭代得到最终的\theta值,现在可以利用牛顿法来进行迭代,l(\theta )是极大似然函数,当\theta是向量的\theta :=\theta -H^{-1}\bigtriangledown _{\theta }l(\theta )时候,\theta :=\theta -H^{-1}\bigtriangledown _{\theta }l(\theta ),其中Hn*n的Hessian矩阵。

     广义线性模型的介绍, softmax 回归,一种广义线性模型的例子,可用于多分类问题,首先将概率化成指数分布族概率的模式,求出概率,然后运用梯度上升法求\theta值。

  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值