《scikit-learn》朴素贝叶斯

在scikit-learn中,优这么集中朴素贝叶斯
naive_bayes.BernoulliNB 伯努利分布下的NB
naive_bayes.GaussianNB 高斯分布下的NB
naive_bayes.MultinomialNB 多项式分布下的NB
naive_bayes.ComplementNB 补充NB

一:高斯朴素贝叶斯
通过假设P(xi | Y)是服从于高斯分布的。它会自动计算某个Y的条件下,某个特征的的均值和方差,然后代入具体值的话就是得到了具体的条件概率。它适用于连续变量。

# 高斯朴素贝叶斯
import numpy as np
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split

# 第一步:加载数据
digits = load_digits()
x, y =digits.data, digits.target
print(x.shape)
print(y.shape)

x_train, x_test, y_train, y_test = train_test_split(x, y, test_size=0.3, random_state=420)
print(x_train.shape)
print(x_test.shape)
print(y_train.shape)
print(y_test.shape)

# 第二步:实例化一个模型
from sklearn.naive_bayes import GaussianNB

gnb = GaussianNB().fit(x_train, y_train)
print(gnb.score(x_test, y_test))  # 查看分数
print(gnb.predict(x_test))  # 对测试数据进行预测

prob = gnb.predict_proba(x_test)
print(prob.shape)  # 返回各个类别下的概率

from sklearn.metrics import confusion_matrix as CM
print(CM(y_true=y_test, y_pred=gnb.predict(x_test)))

二:多项式朴素贝叶斯
在假设概率分布的时候是多项式分布,它擅长于分类型变量。

#多项式分布
import numpy as np

X = np.random.randint(5, size=(6, 100))
y = np.array([1, 2, 3, 4, 5, 6])

from sklearn.naive_bayes import MultinomialNB

clf = MultinomialNB().fit(X, y)
print(clf.predict(X[2:3]))

三:伯努利朴素贝叶斯
假设概率是2分类的,离散变量,且是二类的特征。
BernoulliNB实现了朴素贝叶斯训练和分类算法是根据多元伯努利分布的分布数据;例如,可能会有多个特征,但每一个被假定为一个二进制值(伯努利、布尔)变量。因此,这类要求的样品被表示为二进制值的特征向量;如果交给其他任何类型的数据,一个bernoullinb实例可以进行输入(取决于二值化参数)

#伯努利分布  
import numpy as np  

X = np.random.randint(2, size=(6, 100))  
Y = np.array([1, 2, 3, 4, 4, 5])  

from sklearn.naive_bayes import BernoulliNB  
clf = BernoulliNB()  
clf.fit(X, Y)  
BernoulliNB(alpha=1.0, binarize=0.0, class_prior=None, fit_prior=True)  
print(clf.predict(X[2:3]))  
Scikit-learn库提供了多种贝叶斯分类器的实现,包括高斯朴素贝叶斯、多项式朴素贝叶斯和伯努利朴素贝叶斯。这里以高斯朴素贝叶斯分类器为例,介绍如何使用Scikit-learn库实现贝叶斯分类。 1. 数据准备 首先,我们需要准备一些分类数据。这里使用Scikit-learn库自带的鸢尾花数据集。代码如下: ```python from sklearn.datasets import load_iris iris = load_iris() X = iris.data y = iris.target ``` 2. 数据预处理 在使用贝叶斯分类器之前,需要对数据进行预处理。这里我们使用Scikit-learn库的数据预处理工具preprocessing中的StandardScaler类进行标准化处理。代码如下: ```python from sklearn.preprocessing import StandardScaler scaler = StandardScaler() X = scaler.fit_transform(X) ``` 3. 构建模型 接下来,我们可以使用Scikit-learn库的GaussianNB类构建高斯朴素贝叶斯分类器。代码如下: ```python from sklearn.naive_bayes import GaussianNB gnb = GaussianNB() ``` 4. 模型训练 模型构建完成后,我们需要使用训练数据对模型进行训练。代码如下: ```python gnb.fit(X, y) ``` 5. 模型预测 训练完成后,我们可以使用模型对新的数据进行分类预测。代码如下: ```python y_pred = gnb.predict(X) ``` 6. 模型评估 最后,我们可以使用Scikit-learn库的metrics中的accuracy_score函数计算模型的准确率。代码如下: ```python from sklearn.metrics import accuracy_score accuracy = accuracy_score(y, y_pred) print('Accuracy:', accuracy) ``` 完整代码如下: ```python from sklearn.datasets import load_iris from sklearn.preprocessing import StandardScaler from sklearn.naive_bayes import GaussianNB from sklearn.metrics import accuracy_score # 数据准备 iris = load_iris() X = iris.data y = iris.target # 数据预处理 scaler = StandardScaler() X = scaler.fit_transform(X) # 构建模型 gnb = GaussianNB() # 模型训练 gnb.fit(X, y) # 模型预测 y_pred = gnb.predict(X) # 模型评估 accuracy = accuracy_score(y, y_pred) print('Accuracy:', accuracy) ``` 注意,这里为了简化代码,使用训练数据进行了模型评估。在实际应用中,应该使用测试数据进行模型评估,以避免过拟合问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值