- 博客(18)
- 收藏
- 关注
原创 AOP记录操作日志【SpringBoot+MyBatis-Plus+MySQL】
Retention:描述注解保留的时间范围,取值有三种:RetentionPolicy.SOURCE(源文件保留)、CLASS(编译期保留,默认值)、RUNTIME(运行期保留,可以通过反射获取注解信息);@Target: 描述注解的使用范围,取值有ElementType.TYPE(类、接口、枚举类)、FIELD(成员变量)、METHOD(成员方法)等等;@Inherited:使被它修饰的注解具有继承性(如果某个类使用了被@Inherited修饰的注解,则其子类将自动具有该注解)。
2024-06-03 16:19:42 370
原创 【240422】后端开发之角色管理、部门管理模块开发流程及技术说明
① 查询角色页面结果 :调用service层的page( )方法拿到PO页面结果 -> 复制到BO页面对象。角色表删除角色记录 -> 角色菜单关联表基于角色id删除记录 -> 角色菜单关联表基于角色id删除记录。删除之前该角色所有的菜单权限 -> 拼接角色菜单列表对象,saveBatch( )保存角色菜单信息。③ 构造页面:基于页面大小、页数、对象集合,对象总数构造页面。② 拷贝给VO对象:将BO页面对象的每一行记录拷贝到VO。查询角色页面结果 -> 拷贝给VO对象 -> 构造页面。
2024-04-30 09:44:31 250 1
原创 【240419】后端开发之用户管理模块开发流程及技术说明
用户管理模型包括创建用户、修改用户、删除用户、查询用户、分页查询、根据用户角色查询树型菜单等
2024-04-29 10:23:01 578
原创 【线性模型】
在实践中,一般首选岭回归,但如果特征很多且认为有几个是重要的,那么选择lasso可能更好。scikit-learn还提供了ElasticNet类,结合了Ridge和Lasso的惩罚项。
2022-09-03 11:42:59 640
原创 【K近邻】
KNeighbors有2个重要参数:①邻居个数:在实践中,3-5个邻居个数往往可以得到较好的结果②数据点之间距离的度量方法:默认使用欧氏距离如何设置超参数:② 交叉验证:Split data into folds , try each fold as validation and average the results优点:容易理解、构建速度快缺点:如果训练集很大,预测速度会比较慢;
2022-09-02 21:32:27 551
原创 【李航统计学习】学习笔记第七篇第六章:逻辑斯谛回归与最大熵模型
假设满足所有的约束条件的模型集合为:定义在条件概率分布P(Y|X)上的条件熵为:则模型集合C中的条件熵H§最大的模型称为最大熵模型。式中的对数为自然对数。
2022-08-11 16:43:26 1540
原创 统计学习——简单阐述显著性水平α、p-value之间的关系
P值:原假设成立的情况下拒绝原假设的概率,即冤枉原假设的概率。p拒绝原假设。p≥α 冤枉的概率很大 ——>原假设成立。显著性水平α通常取0.01/0.05。
2022-08-07 18:44:44 4138
原创 【李航统计学习】学习笔记第六篇第五章:决策树之CART算法
分类与回归树(classification and regression tree , CART)是应用广泛的决策树学习算法。CART同样由特征选择、树的生成及剪枝组成,既可以用于分类也可以用于回归。CART是在给定输入随机变量X条件下输出随机变量Y的条件概率分布的方法学习方法。CART假设决策树是二叉树,内部节点特征的取值为“是”和“否”,左分支是取值为“是”的分支,右分支是取值为“否”的分支。CART算法由以下两步组成:(1)决策树生成:基于训练数据集生成决策树,生成的决策树要尽量大;...
2022-08-06 18:09:08 355
原创 【李航统计学习】学习笔记第五篇第五章:决策树
决策树(decision tree)是一种基本的分类与回归方法。其主要有哦电视模型具有可读性,分类速度快。学习时,利用训练数据,根据损失函数最小化的原则建立决策树模型。预测时,对新的数据,利用决策树模型进行分类。决策树学习通常包含3个步骤:特征选择、决策树的生成和决策树的修剪。...
2022-08-06 11:22:51 367
转载 【李航统计学习】学习笔记第四篇:scikit-learn 朴素贝叶斯类库使用小结
朴素贝叶斯是一类比较简单的算法,scikit-learn中朴素贝叶斯类库的使用也比较简单。相对于决策树,KNN之类的算法,朴素贝叶斯需要关注的参数是比较少的,这样也比较容易掌握。在scikit-learn中,一共有3个朴素贝叶斯的分类算法类。分别是GaussianNB,MultinomialNB和BernoulliNB。其中GaussianNB就是先验为高斯分布的朴素贝叶斯,MultinomialNB就是先验为多项式分布的朴素贝叶斯,而BernoulliNB就是先验为伯努利分布的朴素贝叶斯。https。..
2022-07-31 14:00:04 339
原创 【李航统计学习】学习笔记第三篇第四章:朴素贝叶斯法
朴素贝叶斯法(naiveBayes)是基于贝叶斯定理和特征条件独立假设的分类方法。对于给定的训练数据聚集,首先基于特征条件独立假设学习输入输出的联合概率分布;然后基于此模型,对给定的输入x,利用贝叶斯定理求出后验概率最大的输出y。.........
2022-07-30 19:49:52 494
原创 【李航统计学习】学习笔记第二篇第二章:感知机
感知机(perceptron)是二类分类的线性分类模型,其输入为实例的特征向量,输出为实例的类别,取+1和-1二值。感知机对应于输入空间(特征空间)中将实例划分为正负两类的分离超平面,属于。感知机学习旨在求出将训练数据进行线性划分的分离超平面,为此导入基于误分类的损失函数,利用梯度下降法对损失函数进行极小化,求得感知机模型。...
2022-07-30 11:45:09 144
原创 【李航统计学习】学习笔记第一篇第一章:统计学习及监督学习概论
贝叶斯学习(Bayesianlearning)的主要想法是在概率模型的学习和推理中,利用贝叶斯定理,计算在给定数据条件下模型的条件概率,即后验概率,并应用这个原理进行模型的估计,以及对数据的预测。过拟合是指学习时选择的模型所包含的参数过多,以至出现这一模型对已知数据预测的很好,但对未知数据预测的很差的现象。特征空间每个具体的实例是一个实例(instance),通常由特征向量(featurevector)表示,这时,所有特征向量存在的空间称为特征空间(featurespace)。......
2022-07-28 13:59:49 566
原创 JS判断单选框是否选中
判断身份信息和性别是否选中function checkNotNull1(obj){var nodex = document.getElementsByName(obj);var msg = document.getElementById(obj+“Msg”);var div = document.getElementById(obj+“Div”);var flag = false;for(var i=0;i<nodex.length;i++){//选择框不为空if(nodex[i].c
2022-03-16 16:36:08 2539
原创 java直接打印数组 结果输出[I@28d93b30
一个简单的错误:我的预期打印结果为->数组的内容但是打印结果为:总结:直接打印数组后 输出结果为数组的内存地址 而非数组的内容解决方案:-使用Arrays.toString()方法(该方法可以将任意类型的数组转换为字符串)如下:打印结果为:扩展:-同样的,如果想打印多维数组可以使用Arrays.deepToString方法结果为...
2022-03-10 14:58:12 2297
原创 我的mybatis学习笔记(一)——简单了解mybatis
一、mybtis简介1、Mybatis原为Apache公司门下,原来叫ibatis(之前有1.0、2.0) ;后转为Google公司的Github下才改为Mybatis(3.0)2、传统的.JDBC与数据库访问的方式:特点:功能简单、sql语句写在java代码里;缺点:硬编码高耦合3、整体解决框架(1):Hibernate:全自动化映射(旨在消除sql,HQL用于sql优化)希望:sql语句交给开发人员来编写;sql不失去灵活性(2)Mybatis:半自动化框架特点:sql与java
2020-06-11 14:15:03 1299 2
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人