大模型
文章平均质量分 66
大模型论文的日常~
林头头03
德玛西亚从不退缩
展开
-
Google DeepMind: Many-Shot vs. Few-Shot
2️⃣ 模型生成的解释可能优于人工编写的解释:在某些任务中,即使在实例数量相同的情况下,使用模型生成的思考过程(Reinforced ICL)的性能有时甚至能超过使用人工编写的解释。3️⃣ 多实例ICL能够克服预训练偏见:与几实例ICL相比,多实例ICL在处理倾向性标签(如情感分析中的标签替换)时表现出更好的适应性和准确性,显示出随着训练实例的增加,模型能够有效地克服其预训练中的偏见。本文通过实验和新方法展示了大型语言模型在多实例上下文学习中的潜力,特别是在克服预训练偏见和处理复杂任务方面的能力。原创 2024-04-18 22:24:01 · 720 阅读 · 0 评论 -
腾讯AI Lab:“自我对抗”提升大模型的推理能力
1️⃣ 自我对弈的持续改善:通过在对抗性语言游戏中进行自我对弈训练,大型语言模型(LLMs)的推理能力可以连续且显著地改善。这表明,通过特定的游戏设计和规则设置,可以有效地引导LLMs进行更深入的思考和推理,这在传统的单向训练方法中往往难以实现。3️⃣ 增强学习的有效性:通过对比使用自我对弈增强学习训练的模型与仅通过监督学习训练的模型,研究表明自我对弈结合增强学习的方法在提高推理性能方面更为有效。3️⃣ 游戏胜率的提升:研究还观察到,通过自我对弈训练的模型在游戏中的胜率有统一和持续的提升。原创 2024-04-17 23:34:01 · 419 阅读 · 0 评论 -
Intel论文: CoTAR - 多层次的 CoT 归因推理
作者指出,尽管已有的工作尝试通过引入输入到输出的归因来提升生成过程的准确性,但识别合适的归因并验证其准确性依然是一个复杂的问题,现有方法未能有效解决。通过这种结构和方法,论文不仅解决了信息错误生成的问题,还展示了即使是计算资源较少的模型也能通过有效的技术提升来达到或超过大模型的性能水平。不同归因层次的影响:文章还探讨了不同归因级别(例如句子级、段落级)如何影响模型输出的质量,发现在不同情况下这些层次的归因可以不同程度地改善答案的质量和准确性。问题是,如何确保模型的输出与真实信息一致,而不是凭空想象。原创 2024-04-17 23:11:22 · 497 阅读 · 1 评论 -
斯坦福:当RAG和大模型先验知识发生冲突
1️⃣ 修改检索文档:为了测试模型在处理错误或修改过的信息时的表现,研究人员对检索到的文档进行了系统性的修改。研究发现,在检索增强生成(RAG)的设置中,模型对检索内容的偏好与其对内部先验回答的信心成逆向关系。1️⃣ 信息扰动的影响:在进行扰动实验时,研究显示,当参考文档中的信息被错误地修改时,模型更倾向于依赖其内部知识,尤其是当这些内部知识比较强大时。通过这种方法,本文不仅揭示了RAG模型在处理冲突信息时的动态,还提供了改进模型在实际应用中表现的可能策略,特别是在信息可能存在错误的实际应用场景中。原创 2024-04-17 22:23:37 · 611 阅读 · 0 评论 -
ChatGPT 可以预测未来吗?
解决方法: 研究中采用的“未来叙事”提示策略,让ChatGPT讲述设定在未来的虚构故事,这些故事中的角色经历了训练数据后的事件。1️⃣ 未来叙事策略的有效性: 研究发现,与直接预测相比,使用未来叙事的提示策略显著提高了ChatGPT-4在预测未来事件(特别是奥斯卡奖项和经济趋势)的准确性。这表明,利用故事叙述的方式可以更好地激发模型的数据综合和推断能力。3️⃣ 预测准确性的双重性: 在一些宏观经济现象的预测中,尽管叙事提示提高了预测的准确性,但在某些情况下,重要的信息分享可能导致估计结果出现反向偏差。原创 2024-04-16 21:05:08 · 759 阅读 · 0 评论 -
“We Need Structured Output”: 以用户为中心的大模型输出
系统将这些约束直接应用于LLM的生成过程中,确保输出内容的语义和风格与用户的期望一致。例如,用户可能需要生成的内容严格遵守Markdown格式,或者需要生成的角色描述符合特定的JSON结构,这样它们就可以直接被应用程序代码解析和利用。对于用户而言,能够确保生成的内容符合特定的用户界面(UI)和产品规格,提高用户对LLM-powered工具和系统的信任和满意度。2. 后端处理:一旦用户设定了约束,这些信息将传递给LLM,指导其生成过程,确保输出不仅符合技术要求,还符合用户的具体需求。原创 2024-04-15 21:34:25 · 569 阅读 · 0 评论 -
PromptRPA-手机上的智能代理框架
PromptRPA的设计基于一个智能代理的多代理框架,这些代理模拟人类的认知功能,专门用于解释用户意图、管理RPA生成的外部信息以及在智能手机上执行操作。例如,如果用户输入“组织我的照片并按日期分类”,PromptRPA将此解析为具体的文件管理和排序任务,并自动执行这些操作。PromptRPA通过智能代理自动化了智能手机上的RPA任务生成和执行,显著提高了任务的成功率,并减少了用户干预的次数。问题:用户输入的自然语言指令可能包含模糊不清或多义的表达,理解这些复杂的用户意图是具有挑战性的。原创 2024-04-15 01:25:44 · 409 阅读 · 0 评论 -
Google最新论文: 复杂的 Prompt 如何更好的调试?
2️⃣ 挑战2:支持快速迭代调试过程 在另一个情况下,如果开发者想让推荐系统更加注意用户的特殊饮食需求,他们可以添加一些新的规则到系统中,比如“推荐的食品必须符合用户的饮食限制”。该系统不仅改善了对复杂提示的处理能力,还通过其交互式特性和对长文本的优化支持,为模型开发者和研究者提供了更高效的工作方式。想象一下,你正在使用一个智能推荐系统,但它却推荐了一些你因为过敏不能吃的食物,比如含有鸡蛋的食品。这个工具显示出新的推荐句子(如“这个食品不适合你”)是如何受到这些新添加的饮食限制规则的影响的。原创 2024-04-14 16:54:44 · 738 阅读 · 0 评论 -
Apple:叠加提示 - 高效的 RAG 优化方式
本文介绍了一种新的检索增强生成(RAG)提示方法——叠加提示(superposition prompting),该方法可以直接应用于预训练的基于变换器的大模型(LLMs),无需微调。3️⃣ 结果合成:最终,我们只保留最相关的路径(在这个例子中可能是第4个文档的路径),并使用该路径生成的信息来回答问题。例如,第2个和第3个文档与问题关联度不高,因此它们的路径可以在早期阶段被剪枝,从而减少不必要的计算。而在“叠加提示”的过程中,我们可以并行处理这些文档的提示路径。👉 话不多说,举一个叠加提示实际的例子。原创 2024-04-14 16:34:48 · 425 阅读 · 0 评论