目标检测
文章平均质量分 92
迪士尼在逃法务96
这个作者很懒,什么都没留下…
展开
-
YOLO,阅读总结
You Only Look Once: Unified, Real-Time Object Detection1、 论文要解决什么问题?论文对于当前目标检测的速度和精度问题提出了YOLO模型,以期能提升目标检测的速度和精度。2、 论文采用了什么方法?相较于当前调整分类器得到目标检测模型,论文将目标检测定义为边界框和相关类概率的回归问题。并且将单个神经网络在一个评估中直接从完整图像预测边界框和类概率。由于整个检测流水线是一个单一的网络,因此可以直接根据检测性能进行端到端的优化。3、 论文达到什么效果原创 2021-04-15 22:28:58 · 183 阅读 · 0 评论 -
mAP—目标检测模型的评估指标
mAP最近在做目标检测相关的项目,对于mAP一直没有搞懂,因此花了一天来学习,并将其整理在这篇博客里以供参考学习。首先mAP,即平均精度均值(mean Average Precision),是目标检测中最为常用的评估指标。例如对于R-CNN和YOLO性能的评价都会用到mAP。mAP将ground truth 和检测到的bounding box进行比较,并返回一个值,这个值越高说明模型的检测越准确。...原创 2021-04-09 12:43:49 · 3403 阅读 · 2 评论