
AI应用开发
文章平均质量分 91
java实现AI相关的应用开发
大树~~
哦
展开
-
Spring AI 函数调用(Function Call)系统设计方案
从零构建一个灵活、安全、高效的函数调用系统,使大语言模型能够在对话中调用应用程序中的方法,同时保持良好的开发体验和企业级特性。/*** 标记一个方法为AI可调用的工具函数*//*** 工具名称,如果不提供则使用方法名*//*** 工具描述,将发送给LLM帮助其理解工具用途*//*** 是否直接返回结果而不传递给模型*//*** 标记方法参数,提供参数描述和类型信息*//*** 参数名称*//*** 参数描述*//*** 是否必需*/原创 2025-05-06 23:30:34 · 885 阅读 · 0 评论 -
Spring AI 与大语言模型工具调用机制详细笔记
Component@Tool(description = "获取指定城市的天气预报信息,包括温度、湿度、风力等数据"@Param(name = "city", description = "需要查询天气的城市名称") String city,@Param(name = "date", description = "查询日期,可选值:today, tomorrow, week") String date) {// 实现天气查询逻辑,可能涉及调用第三方API、查询数据库等。原创 2025-05-06 23:19:39 · 1117 阅读 · 0 评论 -
基于Spring AI Alibaba实现MCP协议的SSE实时流式服务深度解析
深入探讨了基于Spring AI Alibaba实现MCP协议SSE流式服务的完整技术方案,涵盖协议原理、服务端/客户端实现、性能优化、安全策略等核心内容。通过实时天气服务的完整案例,展示了如何构建高可靠、低延迟的智能流式服务。随着实时AI需求的持续增长,SSE与MCP的结合将为物联网、金融科技、智能交互等领域提供强有力的技术支持。原创 2025-04-20 17:23:33 · 775 阅读 · 0 评论 -
基于Spring AI Alibaba实现MCP-Stdio的全栈解析与实践指南
使用Java Record简化DTO定义@JsonIgnoreProperties增强反序列化容错嵌套结构反映API响应格式。原创 2025-04-20 16:58:29 · 674 阅读 · 0 评论 -
基于Redis实现RAG架构的技术解析与实践指南
Redis在向量检索中的独特优势与实现原理Spring AI与Redis的深度集成方法生产环境中的性能优化实践典型应用场景与安全可靠性设计技术演进方向与生态发展趋势智能客服知识库跨模态搜索引擎个性化推荐系统企业知识管理系统随着Redis向量检索功能的持续增强,其在RAG架构中的地位将愈发重要。混合检索策略的优化大规模向量数据的管理实时更新与增量索引多租户场景下的隔离方案。原创 2025-04-20 16:46:29 · 968 阅读 · 0 评论 -
基于SpringAI Alibaba实现RAG架构的深度解析与实践指南
RAG(Retrieval-Augmented Generation)检索增强生成是一种将信息检索技术与生成式AI相结合的创新架构。知识检索阶段:从结构化/非结构化数据源中检索相关信息内容生成阶段:将检索结果作为上下文输入生成模型结果优化阶段:通过重排模型对生成内容进行优化维度传统生成模型RAG架构知识更新周期依赖训练数据时效性实时检索最新数据内容准确性存在幻觉风险基于事实文档生成领域适应性需要重新训练模型通过更新知识库快速适配可解释性黑盒生成过程可追溯参考文档。原创 2025-04-20 16:37:02 · 1438 阅读 · 0 评论 -
向量存储(VectorStore)详解
向量存储(VectorStore)是现代 AI 应用中的关键技术,能够高效地存储和检索高维向量数据。通过与嵌入模型和 AI 模型的结合,向量存储为开发者提供了强大的工具,用于构建智能问答系统、内容推荐系统等应用。随着技术的不断发展,向量存储将在更多领域发挥重要作用,为开发者提供更多智能化的解决方案。原创 2025-04-12 22:16:43 · 668 阅读 · 0 评论 -
Spring AI 结构化输出详解
Spring AI 提供了一种强大的功能,允许开发者将大型语言模型(LLM)的输出从字符串转换为结构化格式,如 JSON、XML 或 Java 对象。这种结构化输出能力对于依赖可靠解析输出值的下游应用程序至关重要。通过 Spring AI 的结构化输出转换器,开发者可以快速将 AI 模型的结果转换为可以传递给其他应用程序函数和方法的数据类型。转换器在 LLM 调用之前将期望的输出格式附加到 prompt 中,为模型提供生成所需输出结构的明确指导。原创 2025-04-12 22:09:42 · 1162 阅读 · 0 评论 -
文档检索技术详解 (Document Retriever)
文档检索(Document Retriever)是一种信息检索技术,旨在从大量未结构化或半结构化文档中快速找到与特定查询相关的文档或信息。文档检索通常以在线(online)方式运行,能够实时响应用户的查询请求。文档检索的核心在于其基于向量搜索的技术。它通过将用户的查询问题(query)转化为嵌入向量(Embeddings),然后在存储的文档中进行相似性搜索,返回与查询最相关的片段。这些片段可以作为提示词(prompt)的一部分,发送给大模型(LLM)进行汇总处理,最终以答案的形式呈现给用户。原创 2025-04-12 22:03:12 · 1049 阅读 · 0 评论 -
检索增强生成RAG(Retrieval-Augmented Generation)
RAG(Retrieval Augmented Generation,检索增强生成)是一种结合信息检索和文本生成的技术范式。原创 2025-04-12 21:56:38 · 982 阅读 · 0 评论 -
提示词 (Prompt)
Prompt 设计是生成式 AI 应用的基础,直接影响模型的行为和输出质量。通过理解 Prompt 的演变历程、合理划分角色、熟练使用 Spring AI 提供的 Prompt API 与 PromptTemplate 工具,开发者可以构建出灵活、高效且易维护的对话系统。结合最佳实践,您将能够在各类业务场景中充分发挥 LLM 的潜力,为用户带来流畅、智能的交互体验。本文示例基于 Spring AI 框架及 StringTemplate 引擎,旨在为开发者提供系统的 Prompt 设计指导。原创 2025-04-12 21:19:29 · 1159 阅读 · 0 评论 -
对话记忆(Conversational Memory)
除了内存存储,开发者可以实现ChatMemory文件系统:将对话记录序列化为文件,适用于轻量部署。Redis:利用 Redis 的高速读写与过期机制,支持大规模会话并发与自动过期。关系型数据库:将对话存入 MySQL、PostgreSQL 等数据库,便于查询与分析。向量数据库:将历史消息嵌入为向量,并存储在 Pinecone、Weaviate 等系统,实现基于相似度的上下文检索。自定义存储策略的核心在于实现ChatMemory的write与read方法,开发者可灵活定义序列化、检索和过期逻辑。原创 2025-04-12 21:04:42 · 917 阅读 · 0 评论 -
Model Context Protocol (MCP) 模型上下文协议
模型上下文协议(MCP)为 LLM 应用提供了一个统一、标准化的接口,使其能够在对话或工作流中随时访问和操作外部数据源与工具。通过 JSON-RPC 2.0 协议、能力协商机制和多种传输层实现,MCP 打破了不同系统间的集成壁垒,简化了多源集成成本。在 Java/Spring 生态中,借助 Spring AI MCP,我们可以轻松地将本地文件系统、数据库、第三方 API 等资源暴露给 LLM,并在 ChatClient 中将其注册为函数回调,实现“智能体”式的交互与自动化操作。原创 2025-04-12 20:55:13 · 1094 阅读 · 0 评论 -
大型语言模型中的工具调用(Function Calling)技术详解
Bean@Description("Get the weather in location") // 函数描述,帮助模型选择调用Bean 名称(默认为方法名)即作为函数名传给模型。注解为该函数提供说明,模型据此判断何时调用。“工具调用(Function Calling)”为 LLM 提供了与外部系统、API、代码逻辑无缝对接的能力,大大拓展了模型在实际应用中的边界。原创 2025-04-12 20:14:04 · 1050 阅读 · 0 评论 -
深入解析嵌入模型Embedding :从理论到实践的全方位指南
嵌入模型(Embedding Model)是人工智能领域的一项核心技术,它能够将非结构化数据(如文本、图像、音频)转换为数值向量。这个过程类似于为每个数据元素创建一个独特的"数字指纹",使得计算机可以通过数学运算理解和处理这些信息。原创 2025-04-12 19:22:57 · 1067 阅读 · 0 评论 -
深入解析 Spring AI Alibaba 多模态对话模型:构建下一代智能应用的实践指南
现代AI应用正经历从单一文本交互到多模态融合的革命性转变。根据Gartner预测,到2026年将有超过80%的企业应用集成多模态AI能力。Spring AI Alibaba 对话模型体系正是为这一趋势量身打造,其技术架构演进路径呈现以下特点:输入维度扩展:支持文本、图像、音频、视频等多源数据输出能力增强:实现跨模态内容生成与转换上下文理解升级:基于多模态信息的综合语义理解服务编排优化:统一API规范下的异构模型调度1.2 Spring AI Alibaba 的架构定位作为Spring AI生态的重原创 2025-04-12 10:32:21 · 978 阅读 · 0 评论 -
深入解析 Spring AI ChatClient:构建高效 AI 应用的终极指南
分层配置策略基础配置通过 application.yaml 管理业务相关配置使用 Java Config运行时参数通过 Advisor 动态注入性能优化矩阵| 场景 | 策略 | 工具支持 || 高并发 | 响应缓存+流式处理 | Redis+Caffeine || 大数据量 | 分块处理+并行执行 | Reactor Parallel || 低延迟要求 | 本地模型+内存存储 | ONNX Runtime |可观测性方案指标采集:Token 使用量、响应延迟、错误率日志追踪:全链路请求标识。原创 2025-04-12 09:33:58 · 946 阅读 · 0 评论 -
智能体代理模式(Agent Agentic Patterns)深度解析
传统AI系统以规则驱动型工作流为核心,依赖预设程序执行确定性任务(如制造业机器人)。而智能体(Agent)通过大语言模型(LLMs)实现了动态决策能力感知维度:突破单一模态输入,整合视觉、语音、触觉等多源信号推理能力:从线性逻辑处理升级至多层级任务拆解(如金融报告分析需分解为数据检索→计算→趋势预测)行动闭环:形成“目标设定→规划→执行→反思”的自主迭代循环典型案例:Crew.AI平台通过层级流程(Hierarchical Process)原创 2025-04-10 23:11:25 · 910 阅读 · 0 评论 -
Spring AI 框架使用的核心概念
这意味着,就像欧几里得几何中平面上的点可以根据其坐标的远近关系而接近或远离一样,在语义空间中,点的接近程度反映了意义的相似性。嵌入(Embedding)是文本、图像或视频的数值表示,能够捕捉输入之间的关系,Embedding 通过将文本、图像和视频转换为称为向量(Vector)的浮点数数组来工作。创建有效的 Prompt 涉及建立请求的上下文,并用用户输入的特定值替换请求的部分内容。从最初的简单字符串开始,Prompt 逐渐演变为包含多条消息的格式,其中每条消息中的每个字符串代表模型的不同角色。原创 2025-04-10 22:45:54 · 1036 阅读 · 0 评论 -
多角度全面对比A2A、ANP与MCP协议
未来,三者可能形成分层协作:MCP连接工具、A2A协调企业级任务、ANP构建开放网络。而谷歌与Anthropic的竞合关系,将深刻影响AI生态的格局演变。原创 2025-04-10 13:51:38 · 1310 阅读 · 0 评论 -
ANP协议深度解析:智能体网络协议的演进与革新
在此背景下,**自主协商协议(Autonomous Negotiation Protocol, ANP)**应运而生,旨在为智能体提供一套标准化、可扩展的协商框架,以优化任务分配、冲突解决和动态决策。通过融合博弈论、密码学与分布式系统的最新成果,ANP为复杂场景下的智能体协作提供了可验证、高效率的解决方案。未来,ANP或将成为智能社会的“隐形协调者”,推动人类与机器共同构建更高效、更公平的协作生态。:专注于智能体间的策略协商与资源优化,类似“外交谈判”,三者共同构成完整的智能体协作生态。原创 2025-04-10 13:42:36 · 1392 阅读 · 0 评论 -
A2A协议技术解析与行业影响:AI协作的新纪元
在人工智能(AI)技术快速发展的背景下,AI代理(Agent)的互操作性问题逐渐成为制约生态协同的关键瓶颈。2025年4月,Google联合50余家科技企业推出,旨在通过标准化通信框架,实现跨厂商、跨生态的AI代理协作。这一协议的发布标志着AI技术从“单兵作战”向“群体智能”的跃迁,其设计理念、技术实现与行业影响均值得深入探讨。本文将从背景、核心原则、技术架构、应用场景、与MCP协议的协同关系等多维度展开分析。原创 2025-04-10 10:54:57 · 845 阅读 · 0 评论