【ACM数论】和式变换技术,也许是最好的讲解之一

61 篇文章 0 订阅
本文介绍了数论问题中常见的和式变换技术,包括区间枚举型和整除枚举型和式的概念,以及如何通过变换处理和式,如前缀和、约数个数和约数之和。文章还讨论了和式的基本性质,如可拆分性质和常数可提取,并详细阐述了整除枚举型到区间枚举型的转换、指标变换、交换求和次序以及整除分块方法,这些都是解决数论问题的关键技巧。最后,通过一个例题展示了如何应用这些技巧解决实际问题。
摘要由CSDN通过智能技术生成

在做数论题时,往往需要进行和式变换,然后变换成我们可以处理的和式,再针对和式做筛法、整除分块等操作。

本文将介绍一些常见的和式变换技术。

以下出现的概念大部分为个人总结,未必是学术界/竞赛界的统一说法,有不严谨的地方请谅解。

🎈 作者:Eriktse
🎈 简介:19岁,211计算机在读,现役ACM银牌选手🏆力争以通俗易懂的方式讲解算法!❤️欢迎关注我,一起交流C++/Python算法。(优质好文持续更新中……)🚀
🎈 原文链接(阅读原文获得更好阅读体验):https://www.eriktse.com/algorithm/1101.html

和式的基本形式

和式一般有两种:区间枚举型整除枚举型

区间枚举型

我们的前缀和就是一个典型的区间枚举型和式。

假设我们有一个定义域为 x ∈ [ 1 , n ] , x ∈ Z + x\in[1, n],x\in Z^+ x[1,n],xZ+的函数 f ( x ) f(x) f(x),那么我们可以设一个前缀和函数 F ( x ) F(x) F(x),定义为:

F ( x ) = ∑ i = 1 x f ( i ) = f ( 1 ) + f ( 2 ) + . . . + f x ( ) F(x) = \sum_{i=1}^{x}f(i) = f(1) + f(2) + ... + fx() F(x)=i=1xf(i)=f(1)+f(2)+...+fx()

求和符号中,如果没有特殊说明,一般枚举的都是整数,且步长为1。

整除枚举型

约数个数是一个典型的整除枚举型和式,我们可以容易的写出它的表达式:

f ( n ) = ∑ d ∣ n 1 f(n) = \sum_{d|n}1 f(n)=dn1

其中 d ∣ n d|n dn 表示 i i i 可以整除 n n n ,即 i i i n n n 的因子。

约数之和也是一个整除枚举型和式,表达式如下:

g ( n ) = ∑ d ∣ n d g(n) = \sum_{d|n}d g(n)=dnd

和式的基本性质

可拆分性质

第一种拆分如下:

∑ i = 1 n a i = ∑ i = 1 m a i + ∑ i = m + 1 n a i \sum_{i=1}^{n}a_i = \sum_{i=1}^{m}a_i + \sum_{i=m+1}^{n}a_i i=1nai=i=1mai+i=m+1nai

这是显然的,但是基本上用不着。

第二种拆分如下:

∑ i = 1 n ( a i + b i ) = ∑ i = 1 n a i + ∑ i = 1 n b i \sum_{i=1}^{n}(a_i + b_i) = \sum_{i=1}^{n}a_i + \sum_{i=1}^{n}b_i i=1n(ai+bi)=i=1nai+i=1nbi

这也是显然的。

常数可提取

当我们的和式里面乘上了一个常数 k k k,那么这个常数是可以提出来的,由于我们讨论的数域是整数域,这个 k k k一般为整数。(其实对于实数也是满足条件的)。

∑ i = 1 n k a i = k ∑ i = 1 n a i \sum_{i=1}^{n}ka_i = k\sum_{i=1}^{n}a_i i=1nkai=ki=1nai

整除枚举型变换为区间枚举型(重要)

就比如上面那个约数之和的函数:

g ( i ) = ∑ d ∣ n d = ∑ i = 1 n [ d ∣ n ] g(i) = \sum_{d|n}d = \sum_{i=1}^{n}[d|n] g(i)=dnd=i=1n[dn]

我们知道 d d d的取值一定在 [ 1 , n ] [1, n] [1,n],所以我们可以转换枚举类型,此时枚举指标的范围就要改变,同时加上一个布尔函数来限定。

我们称枚举的东西为“指标”,例如上面和式中d|n中的di=1中的i

指标变换(重要)

给定一个整数 k k k,对于下面这种和式,我们可以把指标进行转换。

∑ i = 1 n ∑ j = 1 n [ g c d ( i , j ) = k ] \sum_{i=1}^{n}\sum_{j=1}^{n}[gcd(i, j) = k] i=1nj=1n[gcd(i,j)=k]

现在令 i = i ′ k , j = j ′ k i = i'k,j=j'k i=ik,j=jk,为什么会这么想呢?因为我们后面的布尔函数中要求 i , j i, j i,j都包含因子 k k k,如果枚举的 i , j i, j i,j不是 k k k的倍数的时候这个式子是没有贡献的。

所以我们可以不一个个枚举 i , j i, j i,j,变为枚举 k k k的倍数。我们进行整体的代换:

∑ i ′ k = 1 n ∑ j ′ k = 1 n [ g c d ( i ′ k , j ′ k ) = k ] \sum_{i'k = 1}^{n}\sum_{j'k=1}^{n}[gcd(i'k, j'k) = k] ik=1njk=1n[gcd(ik,jk)=k]

然后变换枚举范围和布尔函数,注意这里 i i i的起点本应该是 ⌊ 1 k ⌋ \lfloor\frac{1}{k}\rfloor k1,但是 0 0 0是没有讨论意义的所以我们从 1 1 1开始。

∑ i = 1 ⌊ n k ⌋ ∑ j = 1 ⌊ n k ⌋ [ g c d ( i , j ) = 1 ] \sum_{i=1}^{\lfloor\frac{n}{k}\rfloor}\sum_{j=1}^{\lfloor\frac{n}{k}\rfloor}[gcd(i, j) = 1] i=1knj=1kn[gcd(i,j)=1]

现在我们可以发现后面这个布尔函数就变成了一个常见的积性函数 ϵ \epsilon ϵ,接下来就可以通过公式 μ ∗ I = ϵ \mu * I = \epsilon μI=ϵ进行莫比乌斯反演(其中符号 ∗ * 表示狄利克雷卷积)。

交换求和次序(重要)

上式进行莫比乌斯反演后可以得到如下的和式(如果不懂莫比乌斯反演可以暂时先不管,之后再学),设 m = ⌊ n k ⌋ m=\lfloor\frac{n}{k}\rfloor m=kn

∑ i = 1 m ∑ j = 1 m ∑ d ∣ g c d ( i , j ) μ ( d ) \sum_{i=1}^{m}\sum_{j=1}^{m}\sum_{d|gcd(i, j)}\mu(d) i=1mj=1mdgcd(i,j)μ(d)

我们可以发现 d ∣ g c d ( i , j ) d|gcd(i, j) dgcd(i,j)这个条件等价于 [ d ∣ i ] [ d ∣ j ] [d|i][d|j] [di][dj],即 d d d同时是 i i i j j j的因子。

接下来我们进行一次枚举类型的转换:

∑ i = 1 m ∑ j = 1 m ∑ d = 1 m [ d ∣ i ] [ d ∣ j ] μ ( d ) \sum_{i=1}^{m}\sum_{j=1}^{m}\sum_{d=1}^{m}[d|i][d|j]\mu(d) i=1mj=1md=1m[di][dj]μ(d)

接下来我们将 d d d的求和符号从后面换到前面去,因为在 μ ( d ) \mu(d) μ(d)中没有包含 i , j i, j i,j的内容,可以直接换,这里需要自己理解一下。

s u m d = 1 m μ ( d ) ∑ i = 1 m [ d ∣ i ] ∑ j = 1 m [ d ∣ j ] \\sum_{d=1}^{m}\mu(d)\sum_{i=1}^{m}[d|i]\sum_{j=1}^{m}[d|j] sumd=1mμ(d)i=1m[di]j=1m[dj]

转换为整除分块形式(十分重要)

上式转换完成后,我们可以发现后面两坨是可以进行整除分块的。

∑ i = 1 m [ d ∣ i ] = ⌊ m d ⌋ \sum_{i=1}^{m}[d|i] = \lfloor\frac{m}{d}\rfloor i=1m[di]=dm

怎么理解呢?这个式子表达的就是当 d d d确定了,在区间[1, n]中有多少整数是 d d d的倍数,显然是 ⌊ m d ⌋ \lfloor\frac{m}{d}\rfloor dm个。

那么和式就可转换为:

∑ i = 1 m ⌊ m d ⌋ ⌊ m d ⌋ \sum_{i=1}^{m}\lfloor\frac{m}{d}\rfloor\lfloor\frac{m}{d}\rfloor i=1mdmdm

例题

luogu P2257 YY的GCD:https://www.luogu.com.cn/problem/P2257

阅读题意我们可以知道题目所求为,不妨设 n ≤ m n\le m nm

a n s = ∑ i = 1 n ∑ j = 1 m [ g c d ( i , j ) ∈ p r i m ] ans=\sum_{i=1}^{n}\sum_{j=1}^{m}[gcd(i,j)\in prim] ans=i=1nj=1m[gcd(i,j)prim]

接下来开始变换:

∑ i = 1 n ∑ j = 1 m ∑ p ∈ p r i m [ g c d ( i , j ) = p ] \sum_{i=1}^{n}\sum_{j=1}^{m}\sum_{p\in prim}[gcd(i,j)=p] i=1nj=1mpprim[gcd(i,j)=p]

∑ p ∈ p r i m ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 ⌊ m p ⌋ [ g c d ( i , j ) = 1 ] \sum_{p\in prim}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}[gcd(i,j)=1] pprimi=1pnj=1pm[gcd(i,j)=1]

莫比乌斯反演:

∑ p ∈ p r i m ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 ⌊ m p ⌋ ∑ d ∣ g c d ( i , j ) μ ( d ) \sum_{p\in prim}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}\sum_{d|gcd(i,j)}\mu(d) pprimi=1pnj=1pmdgcd(i,j)μ(d)

注意这里 n ≤ m n\le m nm,接着变换。

∑ p ∈ p r i m ∑ i = 1 ⌊ n p ⌋ ∑ j = 1 ⌊ m p ⌋ ∑ d = 1 ⌊ n p ⌋ [ d ∣ i ] [ d ∣ j ] μ ( d ) \sum_{p\in prim}\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}\sum_{d=1}^{\lfloor\frac{n}{p}\rfloor}[d|i][d|j]\mu(d) pprimi=1pnj=1pmd=1pn[di][dj]μ(d)

∑ p ∈ p r i m ∑ d = 1 ⌊ n p ⌋ μ ( d ) ∑ i = 1 ⌊ n p ⌋ [ d ∣ i ] ∑ j = 1 ⌊ m p ⌋ [ d ∣ j ] \sum_{p\in prim}\sum_{d=1}^{\lfloor\frac{n}{p}\rfloor}\mu(d)\sum_{i=1}^{\lfloor\frac{n}{p}\rfloor}[d|i]\sum_{j=1}^{\lfloor\frac{m}{p}\rfloor}[d|j] pprimd=1pnμ(d)i=1pn[di]j=1pm[dj]

后面两坨可以进行整除分块,同时换一下 p p p的枚举类型:

∑ p = 1 n [ p ∈ p r i m ] ∑ d = 1 ⌊ n p ⌋ μ ( d ) ⌊ n p d ⌋ ⌊ m p d ⌋ \sum_{p=1}^{n}[p\in prim]\sum_{d=1}^{\lfloor\frac{n}{p}\rfloor}\mu(d)\lfloor\frac{n}{pd}\rfloor\lfloor\frac{m}{pd}\rfloor p=1n[pprim]d=1pnμ(d)pdnpdm

T = p d T=pd T=pd,交换求和次序。

∑ p = 1 n [ p ∈ p r i m ] [ p ∣ T ] ∑ T = 1 n μ ( T p ) ⌊ n T ⌋ ⌊ m T ⌋ \sum_{p=1}^{n}[p\in prim][p|T]\sum_{T=1}^{n}\mu(\frac{T}{p})\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor p=1n[pprim][pT]T=1nμ(pT)TnTm

再交换求和次序:

∑ T = 1 n ⌊ n T ⌋ ⌊ m T ⌋ ∑ p = 1 n [ p ∈ p r i m ] [ p ∣ T ] μ ( T p ) \sum_{T=1}^{n}\lfloor\frac{n}{T}\rfloor\lfloor\frac{m}{T}\rfloor\sum_{p=1}^{n}[p\in prim][p|T]\mu(\frac{T}{p}) T=1nTnTmp=1n[pprim][pT]μ(pT)

现在发现 p p p后面那一块,可以通过类似欧拉筛的方法进行预处理。

我们设一个函数:

F ( T ) = ∑ p = 1 n [ p ∈ p r i m ] [ p ∣ T ] μ ( T p ) F(T) = \sum_{p=1}^{n}[p \in prim][p|T]\mu(\frac{T}{p}) F(T)=p=1n[pprim][pT]μ(pT)

那么 F ( T ) F(T) F(T)的含义就是对于 T T T的每一个质因子 p p p,将它的 μ ( T p ) \mu(\frac{T}{p}) μ(pT)加到自身上。

做完了。

Code:

#include <bits/stdc++.h>
#define int long long
using namespace std;
const int N = 1e7 + 9;

int sum[N], mu[N];

void init(int n = N - 2)
{
	bitset<N> vis;
	vector<int> prim;
	vis[1] = true;
	mu[1] = 1;
	
	for(int i = 2;i <= n; ++ i)
	{
		if(!vis[i])prim.push_back(i), mu[i] = -1;
		
		for(int j = 0;j < prim.size() and i * prim[j] <= n; ++ j)
		{
			vis[i * prim[j]] = true;
			if(i % prim[j] == 0)break;//此时i * prim[j]含有平方因子
			
			mu[i * prim[j]] = -mu[i];//此时i * prim[j]的本质不同质因子+1,或已经含有平方因子
		}
	}
	
	for(int i = 0;i < prim.size(); ++ i)
	{
		for(int j = 1; prim[i] * j  <= n; ++ j)
		{
			sum[prim[i] * j] += mu[j];
		}
	}
	
	for(int i = 1;i <= n; ++ i)sum[i] += sum[i - 1];
	
}

void solve()
{
	int n, m;scanf("%lld %lld", &n, &m);
	if(n > m)swap(n, m);
	int ans = 0;
	for(int l = 1, r;l <= n; l = r + 1)
	{
		r = min(n / (n / l), m / (m / l));
		ans += (sum[r] - sum[l - 1]) * (n / l) * (m / l);
	}
	printf("%lld\n", ans);
}

signed main()
{
	init();
	int _;scanf("%lld", &_);
	while(_ --)solve();
	return 0;
}

结束

🎈 本文由eriktse原创,创作不易,如果对您有帮助,欢迎小伙伴们点赞👍、收藏⭐、留言💬

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值