【2022牛客暑期多校2 - D 】Link with Game Glitch

题目链接:https://ac.nowcoder.com/acm/contest/33188/D
AC代码:https://ac.nowcoder.com/acm/contest/view-submission?submissionId=52837882


题意:
Link正在开发一个游戏。在这个游戏中,玩家可以用 k ∗ a i k*a_i kai b i b_i bi 物品兑换 k ∗ c i k*c_i kci d i d_i di 物品。
有一天Link发现玩家可以利用这个规则刷取无穷个物品。但是Link不希望修改每个兑换的规则。
因此他引入了常数 w ,现在,玩家可以用 k ∗ a i k*a_i kai b i b_i bi 物品兑换 k ∗ w ∗ c i k*w*c_i kwci d i d_i di 物品。
请问在使得玩家不能刷取无穷多物品的条件下,w 的最大取值。

输入:
3 3
1 1 2 2
1 2 2 1
1 3 1 1

输出:
0.5000000000


容易想到,可以把原问题转化为一个图论问题:
1:把“ k ∗ a i k*a_i kai b i b_i bi 物品兑换 k ∗ c i k*c_i kci d i d_i di 物品 ” 转化为 b i → d i b_i\rightarrow d_i bidi 的边权为 c i a i \frac{c_i}{a_i} aici 的一条有向边。
2:原问题转化为,对于图中的每一个环 E { e 1 , e 2 , ⋯ e n } E \{e_1,e_2,\cdots e_n\} E{e1,e2,en},都满足 ∏ i = 1 n ( w ∗ e i ) ⩽ 1 \prod \limits_{i=1}^n(w*e_i)\leqslant1 i=1n(wei)1
3:两边同时取log,得: ∑ i = 1 n ( log ⁡ w + log ⁡ e i ) ⩽ 0 \sum_{i=1}^n(\log{w}+\log{e_i})\leqslant0 i=1n(logw+logei)0
4:因为上述不等式满足单调性,因此可以二分查找满足条件的 w 的最大取值。
5:至此,问题转化为判断图中是否存在正环的问题。
在这里插入图片描述


参考代码:

#include <bits/stdc++.h>
using namespace std;
#define LL long long
#define endl '\n'
typedef pair<int, double> pid;
typedef pair<double, int> pdi;
const int maxn = 5e4+2;
const int N = 5e4+5;
const double eps = 1e-8;
vector<array<int, 4>> p;
int n, m;
int h[N], e[N], ne[N], idx;
double w[N];
queue<int> q;
int st[N];
double dist[N], cnt[N];

void add(int a, int b, double c)
{
    e[idx] = b, w[idx] = c, ne[idx] = h[a], h[a] = idx++;
}
// spfa判负环,板子略
bool spfa();

bool check(double mid)
{
    memset(h, -1, sizeof h);
    idx=0;
    for (auto [a, b, c, d] : p)
    {
        double ww = log(c) - log(a) + log(mid);
        add(b, d, -ww);
    }

    return spfa();
}

void solve()
{
    cin >> n >> m;
    p.resize(m);
    for (auto &[a, b, c, d] : p)
        cin >> a >> b >> c >> d;
    
    double l = 0, r = 1;
    while (r - l > eps)
    {
        double mid = (l + r) * 0.5;
        if (check(mid))
            l = mid;
        else
            r = mid;
    }
    
    printf("%.8lf",l);
}

int main()
{
    ios::sync_with_stdio(false);
    cin.tie(0);
    cout.tie(0);
    solve();
    return 0;
}
评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值