- 博客(14)
- 收藏
- 关注
原创 RocketMQ
RocketMQMq的优点:应用解耦流量的削峰填谷数据分发(将数据发送到多个系统)异步处理Mq的缺点:系统可用性降低使用mq后引用外部依赖增多,mq挂了将会影响应用的可用性系统复杂度提高消息的重复消费、Exactly-Once问题、消息消费顺序问题、消息丢失问题一致性问题多个系统同时处理消息,其中一个系统失败,整个系统一致性如何保证常用MQ比较:特性 RabbitMq RocketMQ Kafka 开发语言 Erlang Ja.
2021-05-06 20:01:16 2536
原创 卷积网络输出大小计算公式
VALID:output_height = (in_height - filter_height)/strides_height + 1output_width = (in_width - filter_width)/strides_width + 1SAME:output_height = in_height/strides_heightoutput_width = in_w...
2019-05-15 15:24:18 5333
转载 泰坦尼克号
数据挖掘流程:(一)读取数据:读取数据,并进行展示 统计数据各项指标 明确数据规模与要完成的任务(二)特征理解分析单特征分析,逐个变量分析其对结果的影响 多变量统计分析,综合考虑多种情况影响 统计绘图得出结论(三)数据清洗与预处理对缺失值进行填充 特征值标准化/归一化 筛选有价值的特征 分析特征中间的相关性(四)建立模型特征数据与标签准备 数据集切分 多...
2019-04-13 09:51:41 1899 1
原创 操作系统内存管理
应用程序的编译、链接与装入 应用程序从用户编写的源文件到内存的执行过程: 编译:编译程序将源代码编译为若干个目标模块 链接:链接程序将编译好的目标模块以及所需的库函数链接在一起,形成完整的装入模块 装入:通过装入程序将这些模块装入内存 一个完整的程序可以由多个模块组成,这些模块都是从0号单元开始编制。当链接程序将多个模块链接为装入模块时,链接程序会按照各个模块的相对地址将其地址构成统一的从0号单元开始编址的相对地址。名地址:对于程序开发者来说,数据的存放地...
2021-09-08 16:38:37 208
原创 Redis分布式锁
一、什么是分布式锁分布式锁,即是在分布式项目中使用的锁,主要用来控制多个实例同时访问共享资源。当服务器抢占到锁时,即可对共享资源进行操作,未抢占到锁的服务器则直接返回失败或者阻塞轮询获取分布式锁。分布式锁主要满足以下几个特点:互斥性:在任何时刻,对于同一条数据,只有一台应用可以获取到分布式锁; 高性能和高可用性:加锁和释放锁的过程性能开销要尽可能的低,同时也要保证高可用,防止分布式锁意外失效(通过集群实现)。 独占性:加锁解锁必须由同一台服务器进行,锁的持有者才可以释放锁; 可重入性.
2021-06-11 18:24:43 226
转载 CPU三级缓存
缓存又叫高速缓冲存储器,其作用在于缓解主存速度慢、跟不上CPU读写速度要求的矛盾。缓存的实现原理,是把CPU最近最可能用到的少量信息(数据或指令)从主存复制到CACHE中,当CPU下次再用这些信息时,它就不必访问慢速的主存,而直接从快速的CACHE中得到,从而提高了得到这些信息的速度,使CPU有更高的运行效率。————————————————版权声明:本文为CSDN博主「王小二(海阔天空)」的原创文章,遵循CC 4.0 BY-SA版权协议,转载请附上原文出处链接及本声明。原文链接:ht...
2021-06-02 10:39:32 4655
原创 java后端只允许Post和Get方法调用
@Configurationpublic calss TomactConfig{@Beanpublic EmbeddedServletContainerFactory servletContainer(){TomcatEmbeddedServletContainerFactory tomcatServletContainerFactory = new TomcatEmbeddedServletContainerFactory ();tomcatServletContainerFacto.
2020-06-03 15:07:26 1296
原创 使用封装库实现卷积网络
h_conv1 = tf.contrib.layers.conv2d(x_image,64,[5,5],[1,1],'SAME',activation_fn=tf.nn.relu)等同于filter_shape = [5,5,1,64]W = tf.Variable(tf.truncated_normal(filter_shape,stddev=0.1),name="W") ...
2019-05-15 16:09:44 180
转载 一个快速完整的教程,以保存和恢复Tensorflow模型。
在本教程中,我将会解释:TensorFlow模型是什么样的? 如何保存TensorFlow模型? 如何恢复预测/转移学习的TensorFlow模型? 如何使用导入的预先训练的模型进行微调和修改?这个教程假设你已经对神经网络有了一定的了解。如果不了解的话请查阅相关资料。1. 什么是TensorFlow模型?训练了一个神经网络之后,我们希望保存它以便将来使用。那么什么是...
2019-05-15 09:56:39 260
原创 基于LSTM实现mnist手写数字识别
首先读取数据,数据源是mnist库,可以通过input_data中read_data函数直接读取数据,数据图像为28*28。#导入库import tensorflow as tf#下载数据对应的库import input_dataimport numpy as npimport matplotlib.pyplot as pltprint ("Packages imported")...
2019-04-27 15:59:49 2527 3
转载 表示学习
表示学习表示:将输入信息转换为有效的特征表示学习:自动地学习出有效的特征,并提高最终机器学习模型的性能。语义鸿沟:输入数据的底层特征和高层语义信息之间的不一致性和差异性。表示学习的关键是解决语义鸿沟。+好的表示:一个好的表示应该具有很强的表示能力,即同样大小的向量可以表示更多信息。 一个好的表示应该使后续的学习任务变得简单,即需要包含更高层的语义信息。 一个好的表示应该...
2019-04-18 15:59:21 1005
原创 基于XGBoost保险赔偿预测
数据介绍https://www.kaggle.com/c/allstate-claims-severitykeggle比赛保险赔偿预测观察数据导入库#导入库import pandas as pdimport numpy as npimport matplotlib.pyplot as pltfrom sklearn.linear_model import Logi...
2019-04-15 21:09:16 1775 2
原创 sklearn 中的cross_val_score()
sklearn中的cross_val_score()函数sklearn.model_selection.cross_val_score(estimator, X, y=None, scoring=None, cv=None, n_jobs=1, verbose=0, fit_params=None, pre_dispatch=‘2*n_jobs’)参数estimator:数据对象X...
2019-04-13 09:56:25 1671
转载 Seaborn
- 为什么用 Seaborn -Seaborn 是基于 Python 且非常受欢迎的图形可视化库,在 Matplotlib 的基础上,进行了更高级的封装,使得作图更加方便快捷。即便是没有什么基础的人,也能通过极简的代码,做出具有分析价值而又十分美观的图形。Seaborn 可以实现 Python 环境下的绝大部分探索性分析的任务,图形化的表达帮助你对数据进行分析,而且对 Python 的其他...
2019-04-12 08:55:45 408
空空如也
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人