大学物理:CH2-电磁学

知识点

  • 库仑定律

  • 静电力的叠加原理

  • 电场强度

  • 场强叠加原理

  • 电偶极子与电偶极矩

  • 连续带电体的场强

    • 求解的关键:建立坐标系,微分,积分

    • 导线延长线处的场强

    • 有限长、半有限长、无限长、半无限长导线x轴上的场强

      • 有限长:仰角范围是 [ − θ d o w n , θ u p ] [-\theta_{down},\theta_{up}] [θdown,θup],线密度为 λ \lambda λ,则x轴上距离原点为x处的场强为:

        • E x = λ 4 π ϵ 0 x ( s i n θ u p − s i n θ d o w n ) E_x=\frac {\lambda}{4 \pi \epsilon_{0} x}(sin\theta_{up}-sin\theta_{down}) Ex=4πϵ0xλ(sinθupsinθdown)
        • E y = λ 4 π ϵ 0 x ( c o s θ u p − c o s θ d o w n ) E_y=\frac {\lambda}{4 \pi \epsilon_{0} x}(cos\theta_{up}-cos\theta_{down}) Ey=4πϵ0xλ(cosθupcosθdown)

        此处已更正

      • 有限长:若x轴恰好是其中轴线,则仰角范围是 [ − θ 0 , θ 0 ] [-\theta_0,\theta_0] [θ0,θ0],则在x轴上距离原点为x处的场强为:

        • E x = λ 4 π ϵ 0 x ( 2 s i n θ 0 ) E_x=\frac {\lambda}{4 \pi \epsilon_{0} x}(2sin\theta_0) Ex=4πϵ0xλ(2sinθ0)
        • E y = 0 E_y=0 Ey=0
      • 半有限长(即x轴在有限长导线底端/顶端,这里以底端为例):则仰角范围是 [ 0 , θ 0 ] [0,\theta_0] [0,θ0]则x轴上距离原点为x处的场强为:

        • E x = λ 4 π ϵ 0 x ( s i n θ 0 ) E_x=\frac {\lambda}{4 \pi \epsilon_{0} x}(sin\theta_0) Ex=4πϵ0xλ(sinθ0)
        • E y = λ 4 π ϵ 0 x ( c o s θ 0 − 1 ) E_y=\frac {\lambda}{4 \pi \epsilon_{0} x}(cos\theta_{0}-1) Ey=4πϵ0xλ(cosθ01)

        此处已更正

      • 无限长:x轴必定在中轴线上,仰角范围是 [ − π 2 , π 2 ] [-\frac {\pi}{2},\frac {\pi}{2}] [2π,2π]

        • E x = λ 2 π ϵ 0 x E_x=\frac {\lambda}{2 \pi \epsilon_{0} x} Ex=2πϵ0xλ
        • E y = 0 E_y=0 Ey=0
      • 半无限长:x轴在底部,导线往上无限延伸。(从原点向上的射线),仰角范围是 [ 0 , π 2 ] [0,\frac {\pi}{2}] [0,2π]

        • E x = λ 4 π ϵ 0 x E_x=\frac {\lambda}{4 \pi \epsilon_{0} x} Ex=4πϵ0xλ
        • E y = − λ 4 π ϵ 0 x E_y=-\frac {\lambda}{4 \pi \epsilon_{0} x} Ey=4πϵ0xλ
        • E x = − E y E_x=-E_y Ex=Ey

        此处已更正

    • 均匀带电圆环轴线上的场强

      • 总电荷量为Q,在x轴上距离原点为x的位置,圆环半径为R
      • E x = x Q 4 π ϵ 0 ( x 2 + R 2 ) 3 / 2 E_x=\frac {xQ}{4 \pi \epsilon_0 (x^2+R^2)^{3/2}} Ex=4πϵ0(x2+R2)3/2xQ
      • E y = 0 E_y=0 Ey=0
    • 均匀带电圆盘轴线上的场强(无厚度):圆环积分

      • 总电荷量为Q,在x轴上距离原点为x的位置,圆盘半径为R,面密度为 σ \sigma σ
      • 若x>>R,点电荷: E = E x = 1 4 π ϵ 0 ⋅ Q x 2 E=E_x=\frac {1}{4 \pi \epsilon_{0}}·\frac {Q}{x^2} E=Ex=4πϵ01x2Q
      • 若x<<R,无限大带电平面: E = E x = σ 2 ϵ 0 E=E_x=\frac {\sigma}{2\epsilon_0} E=Ex=2ϵ0σ
  • 电场线

  • 高斯定理

    • 电通量:标量,通过电场中某一给定面的电场线的总条数叫做通过该面的电通量。
    • 面积元矢量与其方向:从凸面射出来, d S ⃗ = d S ⋅ n ⃗ d\vec S=dS·\vec n dS =dSn ,其中 n ⃗ \vec n n 是面积元的单位法向向量(与该面积元的切面垂直)
    • 通过面积元的电通量:标量
      • d ϕ e = E ⃗ ⋅ d S ⃗ = E d S c o s θ d\phi_e=\vec E ·d\vec S=EdScos\theta dϕe=E dS =EdScosθ
    • 通过封闭曲面的电通量
      • 包围电荷的任意封闭曲面: ϕ e = ∮ S E ⃗ ⋅ d S ⃗ = q 总 ϵ 0 \phi_e=\oint_S \vec E·d\vec S=\frac {q_总}{\epsilon_0} ϕe=SE dS =ϵ0q(重要等式,可以用该等式求解场强E)
      • 不包围电荷的任意封闭曲面:0
      • 对于封闭曲面,只有封闭曲面内的电荷对电通量有贡献
    • 高斯定理:静电场中,通过任意封闭曲面(高斯面)的电通量等于该封闭曲面所包围的电量代数和 1 ϵ 0 \frac {1}{\epsilon_0} ϵ01
    • 高斯定理解题:电场分布具有对称性
      • 带电球体的电场分布:构造半径不同的球体
      • 无限大均匀带电平面的电场分布:构造穿过平面的圆柱
      • 无限长导线的电场分布:构造包围住导线的圆柱,导线穿过圆柱上下底面
  • 环路定理

    • 静电力做功: ∫ a b q 0 ⋅ E ⃗ ⋅ d r ⃗ = ∫ a b q 0 ⋅ 1 4 π ϵ 0 ⋅ q r 2 ⋅ e ⃗ r ⋅ d r ⃗ = \int_a^b q_0·\vec E·d\vec r=\int_a^b q_0·\frac {1}{4\pi\epsilon_0}·\frac {q}{r^2}·\vec e_r·d\vec r=
  • 10
    点赞
  • 37
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值