微积分:如何理解多元函数可微和全微分?

本文探讨了一元和二元函数的可微性,解释了可微性的本质是切线(切面)能近似函数的实际值。通过极限和无穷小的概念,阐述了一元函数在某点可微的条件,并介绍了二元函数可微的切面方程和全微分方程。最后,强调证明可微性关键在于差值是自变量变化量的高阶无穷小。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

前言

  • 在准备数学竞赛时,对多元函数微分学部分的基础概念一直存有困惑,从学数分期间至今一直没有解决,希望趁着竞赛的机会彻底弄明白这些数学概念的具体意义
  • 本人非数学专业学生,下文重在理解而非严谨证明

理解一元函数微分

请注意,下文的趋近是一个过程,而不是一个状态

  • 一元函数f(x)在x = a可微,即指f(x)在x = a点的切线g(x)距离实际值 f(a) 即x = a附近的实际值足够接近,以至于当x无限趋近于a时,可以用g(x)来拟合f(x)的实际值
  • 同理,二元函数f(x, y)在(a, b)可微,即指f(x, y)在(a, b)点的切面g(x, y)距离实际值 f(a, b) 即(a, b)附近的实际值足够接近,以至于当(x, y)无限趋近于(a, b)时,可以用g(x, y)来拟合f(x, y)的实际值
  • 当我们在证明一个函数可微时,关键是从定义出发,证明可微的本质,即对于一元函数而言,证明该点的切线与该点及其附近的实际值足够接近,以至于该切线可以拟合该点,二元函数同理
  • 那么,如何衡量足够接近
  • 数学上的方式是:对于一元函数,若x无限趋近于x = a点时,x = a处的切线g(x)与实际值f(x)的差值是x变化量的高阶无穷小,则说明g(x)与f(x)足够接近,可以用切线拟合实际值,即

f ( x ) = g ( x ) + o ( Δ x ) f(x) = g(x) + o(\Delta x) f(x)=g(x)+o(Δx)

  • 设g(x)的斜率为f’(a)。由于我们考察的是x = a以及该点附近的拟合情况,故 Δ x \Delta x Δx应当是在x=a附近的变化量。即在x在x = a附近变化时,|f(x)的变化量 - g(x)的变化量|应当是x的变化量的高阶无穷小

f ( x ) − f ( a ) = f ′ ( a ) Δ x + o ( Δ x ) f(x) - f(a) = f'(a)\Delta x + o(\Delta x) f(x)f(a)=f(a)Δx+o(Δx)

注意,此时导数是假想出来的,可微才存在导数(斜率)。此处尚未证明可微。

l i m Δ x − > 0 f ( x ) − f ( a ) Δ x lim_{\Delta x -> 0} \frac {f(x) - f(a)}{\Delta x} limΔx>0Δxf(x)f(a)
= f ′ ( x ) + l i m Δ x − > 0 o ( Δ x ) / Δ x = f'(x) + lim_{\Delta x -> 0} o(\Delta x)/\Delta x =f(x)+limΔx>0o(Δx)/Δx

  • 易知,上述等式中等式右端最后一项为0与可微是充要条件。
  • 通过该等式既证明了可微,又求出了导数值(极限存在,极限值)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值