离散傅立叶变换推导(DF、IDFT)

mazonex离散傅立叶变换视频笔记
需要先了解傅里叶变换推导(FT、IFT)
本文仅作为笔记,推导思想和图片来自视频

周期为 2 π 2\pi 2π的函数的复数形式展开(傅里叶级数)

在上一篇文章中part4中提到周期 T = 2 L T=2L T=2L函数的复数形式展开为:
f ( t ) = ∑ n = − ∞ ∞ C n e i n ω t (1.1) \begin{aligned} f(t) &=\sum_{n=-\infty}^{\infty} C_{n} e^{i n \omega t} \end{aligned}\tag{1.1} f(t)=n=Cneinωt(1.1)

其中,
C n = 1 T ∫ 0 T f ( t ) e − i n ω t d t ω = π L = 2 π T \begin{aligned} &C_{n} =\frac{1}{T} \int_{0}^{T} f(t) e^{-i n \omega t} d t\\ &\omega=\frac{\pi}{L}=\frac{2 \pi}{T}\\ \end{aligned} Cn=T10Tf(t)einωtdtω=Lπ=T2π
周期为 2 π 2\pi 2π ω = 1 \omega=1 ω=1,并且令 k = n k=n k=n
f ( t ) = ∑ k = − ∞ ∞ c k e i k t (1.2) \begin{aligned} f(t) &=\sum_{k=-\infty}^{\infty} c_{k} e^{i k t} \end{aligned}\tag{1.2} f(t)=k=ckeikt(1.2)

其中,
c k = 1 T ∫ 0 T f ( t ) e − i k t d t \begin{aligned} &c_{k} =\frac{1}{T} \int_{0}^{T} f(t) e^{-i k t} d t\\ \end{aligned} ck=T10Tf(t)eiktdt

从连续函数到离散函数

假定 f ( n ) f(n) f(n) f ( x ) f(x) f(x) 在一个周期内的等距离采样,采样N个点:
[ f 0 , f 1 , ⋯   , f N − 1 ] \left[f_{0}, f_{1}, \cdots, f_{N-1}\right] [f0,f1,,fN1]
在这里插入图片描述
注意上面最后一个采样点不包括 2 π 2\pi 2π,因为 2 π 2\pi 2π属于下一个周期。

假如取 t = 2 π N t=\frac{2 \pi}{N} t=N2π带入式 ( 1.2 ) (1.2) (1.2)中:
f 1 = f ( 2 π N ) = ∑ k = − ∞ ∞ c k e k 2 π i N = ⋯ + c − 2 e − 2 2 π i N + c − 1 e − 1 2 π i N + c 0 e 0 2 π i N + c 1 e 1 2 π i N + c 2 e 2 2 π i N + ⋯ + c N − 1 e ( N − 1 ) 2 π i N + c N e N 2 π i N + c N + 1 e ( N + 1 ) 2 π i N + ⋯ (1.3) \begin{aligned} f_{1}&=f\left(\frac{2 \pi}{N}\right)=\sum_{k=-\infty}^{\infty} c_{k} e^{k \frac{2 \pi i}{N}}\\ &=\cdots+c_{-2} e^{-2 \frac{2 \pi i}{N}}+c_{-1} e^{-1 \frac{2 \pi i}{N}}+c_{0} e^{0 \frac{2 \pi i}{N}}+c_{1} e^{1 \frac{2 \pi i}{N}}+c_{2} e^{2 \frac{2 \pi i}{N}}+\cdots\\ &\quad+c_{N-1} e^{(N-1) \frac{2 \pi i}{N}}+c_{N} e^{N \frac{2 \pi i}{N}}+c_{N+1} e^{(N+1) \frac{2 \pi i}{N}}+\cdots \end{aligned}\tag{1.3} f1=f(N2π)=k=ckekN2πi=+c2e2N2πi+c1e1N2πi+c0e0N2πi+c1e1N2πi+c2e2N2πi++cN1e(N1)N2πi+cNeNN2πi+cN+1e(N+1)N2πi+(1.3)


什么是 e k 2 π i N e^{k \frac{2 \pi i}{N}} ekN2πi
w = e 2 π i N w=e^{\frac{2 \pi i}{N}} w=eN2πi,则 w k = e k 2 π i N w N = w 0 = 1 w^{k}=e^{k \frac{2 \pi i}{N}} \quad w^{N}=w^{0}=1 wk=ekN2πiwN=w0=1
在这里插入图片描述

观察上图发现:
k = 0 , N , − N , 2 N , − 2 N . . . k=0,N,-N,2N,-2N... k=0,N,N,2N,2N...时, e k 2 π i N = e 0 2 π i N = w 0 = 1 e^{k \frac{2 \pi i}{N}} = e^{0 \frac{2 \pi i}{N}}=w^0=1 ekN2πi=e0N2πi=w0=1
k = 1 , N + 1 , − N + 1 , 2 N + 1 , − 2 N + 1... k=1,N+1,-N+1,2N+1,-2N+1... k=1,N+1,N+1,2N+1,2N+1...时, e k 2 π i N = e 1 2 π i N = w 1 e^{k \frac{2 \pi i}{N}} = e^{1 \frac{2 \pi i}{N}}=w^1 ekN2πi=e1N2πi=w1

k = N − 1 , 2 N − 1 , − 1 , 3 N − 1 , − N − 1... k=N-1,2N-1,-1,3N-1,-N-1... k=N1,2N1,1,3N1,N1...时, e k 2 π i N = e ( N − 1 ) 2 π i N = w N − 1 e^{k \frac{2 \pi i}{N}} = e^{(N-1) \frac{2 \pi i}{N}}=w^{N-1} ekN2πi=e(N1)N2πi=wN1

所以式 ( 1.3 ) (1.3) (1.3)为:
f 1 = f ( 2 π N ) = ∑ k = − ∞ ∞ c k e k 2 π i N = ( c 0 + c N + c − N + c 2 N + c − 2 N + ⋯   ) w 0 + ( c 1 + c N + 1 + c 2 N + 1 + c − N + 1 + c − 2 N + 1 ⋯   ) w 1 + ( c 2 + c N + 2 + c 2 N + 2 + c − N + 2 + c − 2 N + 2 ⋯   ) w 2 ⋯ + ( c N − 1 + c 2 N − 1 + c 3 N − 1 + c − 1 + c − N − 1 ⋯   ) w N − 1 (1.3) \begin{aligned} f_{1}&=f\left(\frac{2 \pi}{N}\right)=\sum_{k=-\infty}^{\infty} c_{k} e^{k \frac{2 \pi i}{N}}\\ &=\left(c_{0}+c_{N}+c_{-N}+c_{2 N}+c_{-2 N}+\cdots\right) w^{0} \\ &\quad+\left(c_{1}+c_{N+1}+c_{2 N+1}+c_{-N+1}+c_{-2 N+1} \cdots\right) w^{1} \\ &\quad+\left(c_{2}+c_{N+2}+c_{2 N+2}+c_{-N+2}+c_{-2 N+2} \cdots\right) w^{2} \\ &\quad\quad \cdots \\ &\quad+\left(c_{N-1}+c_{2 N-1}+c_{3 N-1}+c_{-1}+c_{-N-1} \cdots\right) w^{N-1} \end{aligned}\tag{1.3} f1=f(N2π)=k=ckekN2πi=(c0+cN+cN+c2N+c2N+)w0+(c1+cN+1+c2N+1+cN+1+c2N+1)w1+(c2+cN+2+c2N+2+cN+2+c2N+2)w2+(cN1+c2N1+c3N1+c1+cN1)wN1(1.3)

结论: f ( 2 π N ) f\left(\frac{2 \pi}{N}\right) f(N2π) 的函数值, 只需要 N N N 个基就能得到,不需要无穷多个基, 只要得
到这 N N N 个基的 N N N 个系数就可以。

假如取 t = 2 2 π N t=2\frac{2 \pi}{N} t=2N2π带入式 ( 1.2 ) (1.2) (1.2)中:

可得:

f 2 = f ( 2 2 π N ) = ( c 0 + c N + c − N + c 2 N + c − 2 N + ⋯   ) w 0 + ( c 1 + c N + 1 + c 2 N + 1 + c − N + 1 + c − 2 N + 1 ⋯   ) w 2 + ( c 2 + c N + 2 + c 2 N + 2 + c − N + 2 + c − 2 N + 2 ⋯   ) w 4 ⋯ + ( c N − 1 + c 2 N − 1 + c 3 N − 1 + c − 1 + c − N − 1 ⋯   ) w 2 ( N − 1 ) (1.4) \begin{aligned} f_{2}=&f\left(2 \frac{2 \pi}{N}\right)=\left(c_{0}+c_{N}+c_{-N}+c_{2 N}+c_{-2 N}+\cdots\right) w^{0} \\ &+\left(c_{1}+c_{N+1}+c_{2 N+1}+c_{-N+1}+c_{-2 N+1} \cdots\right) w^{2} \\ &+\left(c_{2}+c_{N+2}+c_{2 N+2}+c_{-N+2}+c_{-2 N+2} \cdots\right) w^{4} \\ & \cdots \\ &+\left(c_{N-1}+c_{2 N-1}+c_{3 N-1}+c_{-1}+c_{-N-1} \cdots\right) w^{2(N-1)} \end{aligned}\tag{1.4} f2=f(2N2π)=(c0+cN+cN+c2N+c2N+)w0+(c1+cN+1+c2N+1+cN+1+c2N+1)w2+(c2+cN+2+c2N+2+cN+2+c2N+2)w4+(cN1+c2N1+c3N1+c1+cN1)w2(N1)(1.4)
同理可以求得 x = 0 2 π N , x = 2 2 π N , 3 2 π N . . . ( N − 1 ) 2 π N x=0\frac{2 \pi}{N},x=2\frac{2 \pi}{N},3\frac{2 \pi}{N}...(N-1)\frac{2 \pi}{N} x=0N2π,x=2N2π,3N2π...(N1)N2π f ( x ) f(x) f(x)的展开形式。

小结:
w k w^{k} wk 对任何整数 k k k,都对应 w 0 , w 1 , ⋯   , w N − 1 w^{0}, w^{1}, \cdots, w^{N-1} w0,w1,,wN1 中的一个
在这里插入图片描述
所以上图中离散采样的8个点,都可以只用 w 0 , w 1 , ⋯   , w N − 1 w^{0}, w^{1}, \cdots, w^{N-1} w0,w1,,wN1 这8个基来表示。
f 0 , f 1 , ⋯   , f N − 1 f_{0}, f_{1}, \cdots, f_{N-1} f0,f1,,fN1 w 0 , w 1 , ⋯   , w N − 1 w^{0}, w^{1}, \cdots, w^{N-1} w0,w1,,wN1是已知,把括号中当做未知数,那么8个方程可以解得8个未知数。

此外假设傅里叶变换展开系数只包含 c 0 , c 1 , ⋯   , c N − 1 c_{0}, c_{1}, \cdots, c_{N-1} c0,c1,,cN1,那么就有结合式 ( 1.2 ) (1.2) (1.2)
f ( x ) = c 0 + c 1 e i x + c 2 e i 2 x + ⋯ + c N − 1 e i ( N − 1 ) x f ( 0 2 π N ) = c 0 + c 1 + c 2 + ⋯ + c N − 1 f ( 1 2 π N ) = c 0 + c 1 w + c 2 w 2 + ⋯ + c N − 1 w N − 1 f ( 2 2 π N ) = c 0 + c 1 w 2 + c 2 w 4 + ⋯ + c N − 1 w 2 ( N − 1 ) f ( 3 2 π N ) = c 0 + c 1 w 3 + c 2 w 6 + ⋯ + c N − 1 w 3 ( N − 1 ) ⋯ f ( ( N − 1 ) 2 π N ) = c 0 + c 1 w N − 1 + c 2 w 2 ( N − 1 ) + ⋯ + c N − 1 w ( N − 1 ) 2 (1.5) \begin{aligned} &f(x)=c_{0}+c_{1} e^{i x}+c_{2} e^{i 2 x}+\cdots+c_{N-1} e^{i(N-1) x} \\ &f\left(0 \frac{2 \pi}{N}\right)=c_{0}+c_{1}+c_{2}+\cdots+c_{N-1} \\ &f\left(1 \frac{2 \pi}{N}\right)=c_{0}+c_{1} w+c_{2} w^{2}+\cdots+c_{N-1} w^{N-1} \\ &f\left(2 \frac{2 \pi}{N}\right)=c_{0}+c_{1} w^{2}+c_{2} w^{4}+\cdots+c_{N-1} w^{2(N-1)} \\ &f\left(3 \frac{2 \pi}{N}\right)=c_{0}+c_{1} w^{3}+c_{2} w^{6}+\cdots+c_{N-1} w^{3(N-1)} \\ &\cdots \\ &f\left((N-1) \frac{2 \pi}{N}\right)=c_{0}+c_{1} w^{N-1}+c_{2} w^{2(N-1)}+\cdots+c_{N-1} w^{(N-1)^{2}} \end{aligned}\tag{1.5} f(x)=c0+c1eix+c2ei2x++cN1ei(N1)xf(0N2π)=c0+c1+c2++cN1f(1N2π)=c0+c1w+c2w2++cN1wN1f(2N2π)=c0+c1w2+c2w4++cN1w2(N1)f(3N2π)=c0+c1w3+c2w6++cN1w3(N1)f((N1)N2π)=c0+c1wN1+c2w2(N1)++cN1w(N1)2(1.5)

注意此时 w = e i x w=e^{ix} w=eix,与 x x x取值有关。

于是有下面矩阵关系:
[ f 0 f 1 f 2 f 3 ⋮ f N − 1 ] = [ 1 1 1 1 ⋯ 1 1 w w 2 w 3 ⋯ w N − 1 1 w 2 w 4 w 6 ⋯ w 2 ( N − 1 ) 1 w 3 w 6 w 9 ⋯ w 3 ( N − 1 ) ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 1 w N − 1 w 2 ( N − 1 ) w 3 ( N − 1 ) ⋯ w ( N − 1 ) 2 ] [ c 0 c 1 c 2 c 3 ⋮ c N − 1 ] (1.6) \left[\begin{array}{c} f_{0} \\ f_{1} \\ f_{2} \\ f_{3} \\ \vdots \\ f_{N-1} \end{array}\right]=\left[\begin{array}{cccccc} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & w & w^{2} & w^{3} & \cdots & w^{N-1} \\ 1 & w^{2} & w^{4} & w^{6} & \cdots & w^{2(N-1)} \\ 1 & w^{3} & w^{6} & w^{9} & \cdots & w^{3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & w^{N-1} & w^{2(N-1)} & w^{3(N-1)} & \cdots & w^{(N-1)^{2}} \end{array}\right]\left[\begin{array}{c} c_{0} \\ c_{1} \\ c_{2} \\ c_{3} \\ \vdots \\ c_{N-1} \end{array}\right]\tag{1.6} f0f1f2f3fN1=111111ww2w3wN11w2w4w6w2(N1)1w3w6w9w3(N1)1wN1w2(N1)w3(N1)w(N1)2c0c1c2c3cN1(1.6)

f = F N c f=F_N c f=FNc


F N F N ∗ = N [ 1 0 0 0 ⋱ 0 0 0 1 ] F N − 1 = 1 N F N ∗ F_{N} F_{N}^{*}=N\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \end{array}\right] \quad \quad \quad \quad \quad \quad F_{N}^{-1}=\frac{1}{N} F_{N}^{*} FNFN=N10000001FN1=N1FN


1 N [ 1 1 1 1 ⋯ 1 1 w ˉ w ˉ 2 w ˉ 3 ⋯ w ˉ N − 1 1 w ˉ 2 w ˉ 4 w ˉ 6 ⋯ w ˉ 2 ( N − 1 ) 1 w 3 w 6 w 9 ⋯ w 3 ( N − 1 ) ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 1 w ˉ N − 1 w ˉ 2 ( N − 1 ) w ˉ 3 ( N − 1 ) ⋯ w ˉ ( N − 1 ) 2 ] [ f 0 f 1 f 2 f 3 ⋮ f N − 1 ] = [ c 0 c 1 c 2 c 3 ⋮ c N − 1 ] (1.7) \frac{1}{N}\left[\begin{array}{cccccc} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \bar{w} & \bar{w}^{2} & \bar{w}^{3} & \cdots & \bar{w}^{N-1} \\ 1 & \bar{w}^{2} & \bar{w}^{4} & \bar{w}^{6} & \cdots & \bar{w}^{2(N-1)} \\ 1 & w^{3} & w^{6} & w^{9} & \cdots & w^{3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \bar{w}^{N-1} & \bar{w}^{2(N-1)} & \bar{w}^{3(N-1)} & \cdots & \bar{w}^{(N-1)^{2}} \end{array}\right]\left[\begin{array}{c} f_{0} \\ f_{1} \\ f_{2} \\ f_{3} \\ \vdots \\ f_{N-1} \end{array}\right]=\left[\begin{array}{c} c_{0} \\ c_{1} \\ c_{2} \\ c_{3} \\ \vdots \\ c_{N-1} \end{array}\right]\tag{1.7} N1111111wˉwˉ2w3wˉN11wˉ2wˉ4w6wˉ2(N1)1wˉ3wˉ6w9wˉ3(N1)1wˉN1wˉ2(N1)w3(N1)wˉ(N1)2f0f1f2f3fN1=c0c1c2c3cN1(1.7)

F N − 1 f = c F_N^{-1}f=c FN1f=c
其中, F N F_N FN就是傅里叶矩阵, F N − 1 f = c F_N^{-1}f=c FN1f=c就是离散傅里叶变换(DFT), F N c = f F_Nc=f FNc=f就是离散傅里叶逆变换(IDFT)。

书上的DFT公式:
X [ k ] = ∑ n = 0 N − 1 x [ n ] e − k 2 π n i N \quad X[k]=\sum_{n=0}^{N-1} x[n] e^{-k \frac{2 \pi n i}{N}} X[k]=n=0N1x[n]ekN2πni

和矩阵形式对比有以下对应关系:
[ x [ 0 ] x [ 1 ] x [ 2 ] x [ 3 ] ⋮ x [ N − 1 ] ] = [ f 0 f 1 f 2 f 3 ⋮ f N − 1 ] \left[\begin{array}{c} x[0] \\ x[1] \\ x[2] \\ x[3] \\ \vdots \\ x[N-1] \end{array}\right]=\left[\begin{array}{c} f_{0} \\ f_{1} \\ f_{2} \\ f_{3} \\ \vdots \\ f_{N-1} \end{array}\right] x[0]x[1]x[2]x[3]x[N1]=f0f1f2f3fN1

[ X [ 0 ] X [ 1 ] X [ 2 ] X [ 3 ] ⋮ X [ N − 1 ] ] = N [ c 0 c 1 c 2 c 3 ⋮ c N − 1 ] \left[\begin{array}{c} X[0] \\ X[1] \\ X[2] \\ X[3] \\ \vdots \\ X[N-1] \end{array}\right]=N\left[\begin{array}{c} c_{0} \\ c_{1} \\ c_{2} \\ c_{3} \\ \vdots \\ c_{N-1} \end{array}\right] X[0]X[1]X[2]X[3]X[N1]=Nc0c1c2c3cN1

注意在式 ( 1.7 ) (1.7) (1.7)中, w ˉ = e − k 2 π i N \bar{w}=e^{-k \frac{2 \pi i}{N}} wˉ=ekN2πi

例1(复数函数)

对下列函数进行DFT:
f ( x ) = 1 + e i x + e i 2 x + e i 3 x (1.8) f(x)=1+e^{i x}+e^{i 2 x}+e^{i 3 x}\tag{1.8} f(x)=1+eix+ei2x+ei3x(1.8)
N=4时:
f ( 0 ) = 4 f ( 1 2 π 4 ) = f ( 2 2 π 4 ) = f ( 3 2 π 4 ) = 0 f(0)=4 \quad f\left(1 \frac{2 \pi}{4}\right)=f\left(2 \frac{2 \pi}{4}\right)=f\left(3 \frac{2 \pi}{4}\right)=0 f(0)=4f(142π)=f(242π)=f(342π)=0
于是:
w = e 2 π i 4 = i w=e^{\frac{2 \pi i}{4}}=i w=e42πi=i

[ 1 1 1 1 1 w w 2 w 3 1 w 2 w 4 w 6 1 w 3 w 6 w 9 ] − 1 [ 4 0 0 0 ] = [ 1 1 1 1 ] \left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & w & w^{2} & w^{3} \\ 1 & w^{2} & w^{4} & w^{6} \\ 1 & w^{3} & w^{6} & w^{9} \end{array}\right]^{-1}\left[\begin{array}{l} 4 \\ 0 \\ 0 \\ 0 \end{array}\right]=\left[\begin{array}{l} 1 \\ 1 \\ 1 \\ 1 \end{array}\right] 11111ww2w31w2w4w61w3w6w914000=1111

因此: c 0 = 1 , c 1 = 1 , c 2 = 1 , c 3 = 1 c_0=1,c_1=1,c_2=1,c_3=1 c0=1,c1=1,c2=1,c3=1
即:
f ( x ) = 1 + e i x + e i 2 x + e i 3 x f(x)=1+e^{i x}+e^{i 2 x}+e^{i 3 x} f(x)=1+eix+ei2x+ei3x
注意:式 ( 1.5 ) (1.5) (1.5) f ( x ) f(x) f(x)在每个采样点展开形式不一样( w 0 , w 1 , ⋯   , w N − 1 w^{0}, w^{1}, \cdots, w^{N-1} w0,w1,,wN1),但是系数是一样的。也就可以确定函数的展开式 f ( x ) = c 0 + c 1 e i x + c 2 e i 2 x + ⋯ + c N − 1 e i ( N − 1 ) x f(x)=c_{0}+c_{1} e^{i x}+c_{2} e^{i 2 x}+\cdots+c_{N-1} e^{i(N-1) x} f(x)=c0+c1eix+c2ei2x++cN1ei(N1)x系数。


N=3时:
f ( 0 ) = 4 f ( 2 π 3 ) = 1 f ( 2 2 π 3 ) = 1 f(0)=4 \quad f\left(\frac{2 \pi}{3}\right)=1 \quad f\left(2 \frac{2 \pi}{3}\right)=1 f(0)=4f(32π)=1f(232π)=1
于是:
w = e 2 π i 3 = − 1 2 + 3 2 i w=e^{\frac{2 \pi i}{3}}=-\frac{1}{2}+\frac{\sqrt{3}}{2} i w=e32πi=21+23 i

[ 1 1 1 1 w w 2 1 w 2 w 4 ] − 1 [ 4 1 1 ] = [ 2 1 1 ] \left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & w & w^{2} \\ 1 & w^{2} & w^{4} \end{array}\right]^{-1}\left[\begin{array}{l} 4 \\ 1 \\ 1 \end{array}\right]=\left[\begin{array}{l} 2 \\ 1 \\ 1 \end{array}\right] 1111ww21w2w41411=211
因此: c 0 = 2 , c 1 = 1 , c 2 = 1 c_0=2,c_1=1,c_2=1 c0=2,c1=1,c2=1
即:
f ( x ) = 2 + e i x + e i 2 x f(x)=2+e^{i x}+e^{i 2 x} f(x)=2+eix+ei2x
而实际上 c 0 + c 3 = 2 , c 1 = 1 , c 2 = 1 c_0+c_3=2,c_1=1,c_2=1 c0+c3=2,c1=1,c2=1假设傅里叶变换展开系数只包含 c 0 , c 1 , ⋯   , c N − 1 c_{0}, c_{1}, \cdots, c_{N-1} c0,c1,,cN1就只能解得合并的结果。


N=6时:
f ( 0 ) = 4 f ( 1 2 π 6 ) = 3 i f ( 2 2 π 6 ) = 1 f ( 3 2 π 6 ) = 0 f ( 4 2 π 6 ) = 1 f ( 4 2 π 6 ) = − 3 i \begin{aligned} &f(0)=4 \quad f\left(1 \frac{2 \pi}{6}\right)=\sqrt{3} i \quad f\left(2 \frac{2 \pi}{6}\right)=1 \\ &f\left(3 \frac{2 \pi}{6}\right)=0 \quad f\left(4 \frac{2 \pi}{6}\right)=1 \quad f\left(4 \frac{2 \pi}{6}\right)=-\sqrt{3} i \end{aligned} f(0)=4f(162π)=3 if(262π)=1f(362π)=0f(462π)=1f(462π)=3 i

于是:
w = e 2 π i 6 = 1 2 + 3 2 i w=e^{\frac{2 \pi i}{6}}=\frac{1}{2}+\frac{\sqrt{3}}{2} i w=e62πi=21+23 i

W 6 − 1 [ 4 3 i 1 0 1 − 3 i ] = [ 1 1 1 1 0 0 ] W_{6}^{-1}\left[\begin{array}{c} 4 \\ \sqrt{3} i \\ 1 \\ 0 \\ 1 \\ -\sqrt{3} i \end{array}\right]=\left[\begin{array}{l} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{array}\right] W6143 i1013 i=111100

因此, c 0 = 1 , c 1 = 1 , c 2 = 1 , c 3 = 1 , c 4 = 0 , c 5 = 0 c_0=1,c_1=1,c_2=1,c_3=1,c_4=0,c_5=0 c0=1,c1=1,c2=1,c3=1,c4=0,c5=0
即:
f ( x ) = 1 + e i x + e i 2 x + e i 3 x + 0 e i 4 x + 0 e i 5 x f(x)=1+e^{i x}+e^{i 2 x}+e^{i 3 x}+0e^{i 4 x}+0e^{i 5 x} f(x)=1+eix+ei2x+ei3x+0ei4x+0ei5x

例2(实值函数)

对下列函数进行DFT:
f ( x ) = 1 + cos ⁡ ( x ) + cos ⁡ ( 2 x ) (1.9) f(x)=1+\cos (x)+\cos (2 x)\tag{1.9} f(x)=1+cos(x)+cos(2x)(1.9)

欧拉公式可知:
cos ⁡ θ = 1 2 ( e i θ + e − i θ ) sin ⁡ θ = − 1 2 i ( e i θ − e − i θ ) \begin{aligned} &\cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right) \\ &\sin \theta=-\frac{1}{2} i\left(e^{i \theta}-e^{-i \theta}\right) \end{aligned} cosθ=21(eiθ+eiθ)sinθ=21i(eiθeiθ)
所以式 ( 1.9 ) (1.9) (1.9)可转为:
f ( x ) = 1 2 e − i 2 x + 1 2 e − i x + 1 + 1 2 e i x + 1 2 e i 2 x f(x)=\frac{1}{2} e^{-i 2 x}+\frac{1}{2} e^{-i x}+1+\frac{1}{2} e^{i x}+\frac{1}{2} e^{i 2 x} f(x)=21ei2x+21eix+1+21eix+21ei2x
后面的DFT和例1一样。

例3

例1和例2都是已知函数,对其采样,进行DFT。
例3未知函数,在给出采样点情况下求DFT。
现在,不假设傅里叶变换展开系数只包含 c 0 , c 1 , ⋯   , c N − 1 c_{0}, c_{1}, \cdots, c_{N-1} c0,c1,,cN1

已知周期( T = 2 π T=2\pi T=2π函数的4个采样点值:
[ 4 0 0 0 ] \left[\begin{array}{l} 4 \\ 0 \\ 0 \\ 0 \end{array}\right] 4000

则:
w = e 2 π i 4 = i w=e^{\frac{2 \pi i}{4}}=i w=e42πi=i

f ( x ) : { f ( 0 2 π 4 ) = 4 f ( 1 2 π 4 ) = 0 f ( 2 2 π 4 ) = 0 f ( 3 2 π 4 ) = 0 \begin{array}{r} f(x):\left\{\begin{aligned} f\left(0 \frac{2 \pi}{4}\right)=4 \\ f\left(1 \frac{2 \pi}{4}\right)=0 \\ f\left(2 \frac{2 \pi}{4}\right)=0 \\ f\left(3 \frac{2 \pi}{4}\right)=0 \end{aligned}\right. \end{array} f(x):f(042π)=4f(142π)=0f(242π)=0f(342π)=0

类似式 ( 1.3 ) (1.3) (1.3) ( 1.4 ) (1.4) (1.4)的求法:

f ( x ) = ∑ k = − ∞ ∞ c k e i k x f(x)=\sum_{k=-\infty}^{\infty} c_{k} e^{i k x} f(x)=k=ckeikx

f ( 0 2 π 4 ) = ( ⋯ + c − 4 + c 0 + c 4 + ⋯   ) w 0 + ( ⋯ + c − 3 + c 1 + c 5 + ⋯   ) w 0 + ( ⋯ + c − 2 + c 2 + c 6 + ⋯   ) w 0 + ( ⋯ + c − 1 + c 3 + c 7 + ⋯   ) w 0 \begin{aligned} f\left(0 \frac{2 \pi}{4}\right) &=\left(\cdots+c_{-4}+c_{0}+c_{4}+\cdots\right) w^{0} \\ &+\left(\cdots+c_{-3}+c_{1}+c_{5}+\cdots\right) w^{0} \\ &+\left(\cdots+c_{-2}+c_{2}+c_{6}+\cdots\right) w^{0} \\ &+\left(\cdots+c_{-1}+c_{3}+c_{7}+\cdots\right) w^{0} \end{aligned} f(042π)=(+c4+c0+c4+)w0+(+c3+c1+c5+)w0+(+c2+c2+c6+)w0+(+c1+c3+c7+)w0

f ( 1 2 π 4 ) = ( ⋯ + c − 4 + c 0 + c 4 + ⋯   ) w 0 + ( ⋯ + c − 3 + c 1 + c 5 + ⋯   ) w 1 + ( ⋯ + c − 2 + c 2 + c 6 + ⋯   ) w 2 + ( ⋯ + c − 1 + c 3 + c 7 + ⋯   ) w 3 \begin{aligned} f\left(1 \frac{2 \pi}{4}\right)=&\left(\cdots+c_{-4}+c_{0}+c_{4}+\cdots\right) w^{0} \\ +&\left(\cdots+c_{-3}+c_{1}+c_{5}+\cdots\right) w^{1} \\ &+\left(\cdots+c_{-2}+c_{2}+c_{6}+\cdots\right) w^{2} \\ &+\left(\cdots+c_{-1}+c_{3}+c_{7}+\cdots\right) w^{3} \end{aligned} f(142π)=+(+c4+c0+c4+)w0(+c3+c1+c5+)w1+(+c2+c2+c6+)w2+(+c1+c3+c7+)w3

f ( 2 2 π 4 ) = ( ⋯ + c − 4 + c 0 + c 4 + ⋯   ) w 0 + ( ⋯ + c − 3 + c 1 + c 5 + ⋯   ) w 2 + ( ⋯ + c − 2 + c 2 + c 6 + ⋯   ) w 4 + ( ⋯ + c − 1 + c 3 + c 7 + ⋯   ) w 6 \begin{aligned} f\left(2 \frac{2 \pi}{4}\right) &=\left(\cdots+c_{-4}+c_{0}+c_{4}+\cdots\right) w^{0} \\ &+\left(\cdots+c_{-3}+c_{1}+c_{5}+\cdots\right) w^{2} \\ &+\left(\cdots+c_{-2}+c_{2}+c_{6}+\cdots\right) w^{4} \\ &+\left(\cdots+c_{-1}+c_{3}+c_{7}+\cdots\right) w^{6} \end{aligned} f(242π)=(+c4+c0+c4+)w0+(+c3+c1+c5+)w2+(+c2+c2+c6+)w4+(+c1+c3+c7+)w6

f ( 3 2 π 4 ) = ( ⋯ + c − 4 + c 0 + c 4 + ⋯   ) w 0 + ( ⋯ + c − 3 + c 1 + c 5 + ⋯   ) w 3 + ( ⋯ + c − 2 + c 2 + c 6 + ⋯   ) w 6 + ( ⋯ + c − 1 + c 3 + c 7 + ⋯   ) w 9 \begin{aligned} f\left(3 \frac{2 \pi}{4}\right)=&\left(\cdots+c_{-4}+c_{0}+c_{4}+\cdots\right) w^{0} \\ &+\left(\cdots+c_{-3}+c_{1}+c_{5}+\cdots\right) w^{3} \\ &+\left(\cdots+c_{-2}+c_{2}+c_{6}+\cdots\right) w^{6} \\ &+\left(\cdots+c_{-1}+c_{3}+c_{7}+\cdots\right) w^{9} \end{aligned} f(342π)=(+c4+c0+c4+)w0+(+c3+c1+c5+)w3+(+c2+c2+c6+)w6+(+c1+c3+c7+)w9

类似式 ( 1.6 ) (1.6) (1.6),但是不假设傅里叶变换展开系数只包含 c 0 , c 1 , ⋯   , c N − 1 c_{0}, c_{1}, \cdots, c_{N-1} c0,c1,,cN1,于是有:
[ f ( 0 2 π 4 ) f ( 1 2 π 4 ) f ( 2 2 π 4 ) f ( 3 2 π 4 ) ] = [ 1 1 1 1 1 w w 2 w 3 1 w 2 w 4 w 6 1 w 3 w 6 w 9 ] [ ( ⋯ + c − 4 + c 0 + c 4 + ⋯   ) ( ⋯ + c − 3 + c 1 + c 5 + ⋯   ) ( ⋯ + c − 2 + c 2 + c 6 + ⋯   ) ( ⋯ + c − 1 + c 3 + c 7 + ⋯   ) ] \left[\begin{array}{c} f\left(0 \frac{2 \pi}{4}\right) \\ f\left(1 \frac{2 \pi}{4}\right) \\ f\left(2 \frac{2 \pi}{4}\right) \\ f\left(3 \frac{2 \pi}{4}\right) \end{array}\right]=\left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & w & w^{2} & w^{3} \\ 1 & w^{2} & w^{4} & w^{6} \\ 1 & w^{3} & w^{6} & w^{9} \end{array}\right]\left[\begin{array}{l} \left(\cdots+c_{-4}+c_{0}+c_{4}+\cdots\right) \\ \left(\cdots+c_{-3}+c_{1}+c_{5}+\cdots\right) \\ \left(\cdots+c_{-2}+c_{2}+c_{6}+\cdots\right) \\ \left(\cdots+c_{-1}+c_{3}+c_{7}+\cdots\right) \end{array}\right] f(042π)f(142π)f(242π)f(342π)=11111ww2w31w2w4w61w3w6w9(+c4+c0+c4+)(+c3+c1+c5+)(+c2+c2+c6+)(+c1+c3+c7+)

可以发现 c c c是按模4取得。
求解上式可得:
c = [ 1 1 1 1 ] = [ ( ⋯ + c − 4 + c 0 + c 4 + ⋯   ) ( ⋯ + c − 3 + c 1 + c 5 + ⋯   ) ( ⋯ + c − 2 + c 2 + c 6 + ⋯   ) ( ⋯ + c − 1 + c 3 + c 7 + ⋯   ) ] c=\left[\begin{array}{l} 1 \\ 1 \\ 1 \\ 1 \end{array}\right]=\left[\begin{array}{l} \left(\cdots+c_{-4}+c_{0}+c_{4}+\cdots\right) \\ \left(\cdots+c_{-3}+c_{1}+c_{5}+\cdots\right) \\ \left(\cdots+c_{-2}+c_{2}+c_{6}+\cdots\right) \\ \left(\cdots+c_{-1}+c_{3}+c_{7}+\cdots\right) \end{array}\right] c=1111=(+c4+c0+c4+)(+c3+c1+c5+)(+c2+c2+c6+)(+c1+c3+c7+)
于是下面求得的函数都满足 c c c
( 1 ) : f ( x ) = 1 + e i x + e i 2 x + e i 3 x ( 2 ) : f ( x ) = 1 + e i x + e i 2 x + e − i x ( 3 ) : f ( x ) = 1 2 e − i x + 1 + e i x + e i 2 x + 1 2 e i 3 x ( 4 ) : f ( x ) = 1 + 1 3 e i x + 1 3 e i 5 x + 1 3 e i 9 x + e i 2 x + e i 3 x \begin{aligned} &(1):f(x)=1+e^{i x}+e^{i 2 x}+e^{i 3 x} \\ &(2):f(x)=1+e^{i x}+e^{i 2 x}+e^{-i x} \\ &(3):f(x)=\frac{1}{2} e^{-i x}+1+e^{i x}+e^{i 2 x}+\frac{1}{2} e^{i 3 x} \\ &(4):f(x)=1+\frac{1}{3} e^{i x}+\frac{1}{3} e^{i 5 x}+\frac{1}{3} e^{i 9 x}+e^{i 2 x}+e^{i 3 x} \end{aligned} (1)f(x)=1+eix+ei2x+ei3x(2)f(x)=1+eix+ei2x+eix(3)f(x)=21eix+1+eix+ei2x+21ei3x(4)f(x)=1+31eix+31ei5x+31ei9x+ei2x+ei3x

比如(4):
c 0 = 1 c 1 = 1 3 , c 5 = 1 3 , c 9 = 1 3 c 2 = 1 c 3 = 1 \begin{aligned} &c_0=1\\ &c_1=\frac{1}{3},c_5=\frac{1}{3},c_9=\frac{1}{3}\\ &c_2=1\\ &c_3=1 \end{aligned} c0=1c1=31,c5=31,c9=31c2=1c3=1


既然存在无限多函数组合,所以我们假设傅里叶变换展开系数只包含 c 0 , c 1 , ⋯   , c N − 1 c_{0}, c_{1}, \cdots, c_{N-1} c0,c1,,cN1,于是有:
c = [ 1 1 1 1 ] = [ c 0 c 1 c 2 c 3 ] c=\left[\begin{array}{l} 1 \\ 1 \\ 1 \\ 1 \end{array}\right]=\left[\begin{array}{l} c_0 \\ c_1 \\ c_2 \\ c_3 \end{array}\right] c=1111=c0c1c2c3

f ( x ) = 1 + e i x + e i 2 x + e i 3 x f(x)=1+e^{i x}+e^{i 2 x}+e^{i 3 x} f(x)=1+eix+ei2x+ei3x

所以当原函数存在高频,就比如(4)存在 e i 5 x , e i 9 x e^{i 5 x}, e^{i 9 x} ei5x,ei9x这种函数就无法得出,因为我在上面假设情况下总是做低频处理。所以DFT的缺点就是丢失了高频信号,但是当采样点足够多,比如原函数最高频率对应就为 e i 9 x e^{i 9 x} ei9x,而采样点数目刚好为9个,就可以完整恢复原函数。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值