mazonex离散傅立叶变换视频笔记
需要先了解傅里叶变换推导(FT、IFT)
本文仅作为笔记,推导思想和图片来自视频
周期为 2 π 2\pi 2π的函数的复数形式展开(傅里叶级数)
在上一篇文章中part4中提到周期
T
=
2
L
T=2L
T=2L函数的复数形式展开为:
f
(
t
)
=
∑
n
=
−
∞
∞
C
n
e
i
n
ω
t
(1.1)
\begin{aligned} f(t) &=\sum_{n=-\infty}^{\infty} C_{n} e^{i n \omega t} \end{aligned}\tag{1.1}
f(t)=n=−∞∑∞Cneinωt(1.1)
其中,
C
n
=
1
T
∫
0
T
f
(
t
)
e
−
i
n
ω
t
d
t
ω
=
π
L
=
2
π
T
\begin{aligned} &C_{n} =\frac{1}{T} \int_{0}^{T} f(t) e^{-i n \omega t} d t\\ &\omega=\frac{\pi}{L}=\frac{2 \pi}{T}\\ \end{aligned}
Cn=T1∫0Tf(t)e−inωtdtω=Lπ=T2π
周期为
2
π
2\pi
2π时
ω
=
1
\omega=1
ω=1,并且令
k
=
n
k=n
k=n:
f
(
t
)
=
∑
k
=
−
∞
∞
c
k
e
i
k
t
(1.2)
\begin{aligned} f(t) &=\sum_{k=-\infty}^{\infty} c_{k} e^{i k t} \end{aligned}\tag{1.2}
f(t)=k=−∞∑∞ckeikt(1.2)
其中,
c
k
=
1
T
∫
0
T
f
(
t
)
e
−
i
k
t
d
t
\begin{aligned} &c_{k} =\frac{1}{T} \int_{0}^{T} f(t) e^{-i k t} d t\\ \end{aligned}
ck=T1∫0Tf(t)e−iktdt
从连续函数到离散函数
假定
f
(
n
)
f(n)
f(n) 是
f
(
x
)
f(x)
f(x) 在一个周期内的等距离采样,采样N个点:
[
f
0
,
f
1
,
⋯
,
f
N
−
1
]
\left[f_{0}, f_{1}, \cdots, f_{N-1}\right]
[f0,f1,⋯,fN−1]
注意上面最后一个采样点不包括
2
π
2\pi
2π,因为
2
π
2\pi
2π属于下一个周期。
假如取
t
=
2
π
N
t=\frac{2 \pi}{N}
t=N2π带入式
(
1.2
)
(1.2)
(1.2)中:
f
1
=
f
(
2
π
N
)
=
∑
k
=
−
∞
∞
c
k
e
k
2
π
i
N
=
⋯
+
c
−
2
e
−
2
2
π
i
N
+
c
−
1
e
−
1
2
π
i
N
+
c
0
e
0
2
π
i
N
+
c
1
e
1
2
π
i
N
+
c
2
e
2
2
π
i
N
+
⋯
+
c
N
−
1
e
(
N
−
1
)
2
π
i
N
+
c
N
e
N
2
π
i
N
+
c
N
+
1
e
(
N
+
1
)
2
π
i
N
+
⋯
(1.3)
\begin{aligned} f_{1}&=f\left(\frac{2 \pi}{N}\right)=\sum_{k=-\infty}^{\infty} c_{k} e^{k \frac{2 \pi i}{N}}\\ &=\cdots+c_{-2} e^{-2 \frac{2 \pi i}{N}}+c_{-1} e^{-1 \frac{2 \pi i}{N}}+c_{0} e^{0 \frac{2 \pi i}{N}}+c_{1} e^{1 \frac{2 \pi i}{N}}+c_{2} e^{2 \frac{2 \pi i}{N}}+\cdots\\ &\quad+c_{N-1} e^{(N-1) \frac{2 \pi i}{N}}+c_{N} e^{N \frac{2 \pi i}{N}}+c_{N+1} e^{(N+1) \frac{2 \pi i}{N}}+\cdots \end{aligned}\tag{1.3}
f1=f(N2π)=k=−∞∑∞ckekN2πi=⋯+c−2e−2N2πi+c−1e−1N2πi+c0e0N2πi+c1e1N2πi+c2e2N2πi+⋯+cN−1e(N−1)N2πi+cNeNN2πi+cN+1e(N+1)N2πi+⋯(1.3)
什么是
e
k
2
π
i
N
e^{k \frac{2 \pi i}{N}}
ekN2πi?
令
w
=
e
2
π
i
N
w=e^{\frac{2 \pi i}{N}}
w=eN2πi,则
w
k
=
e
k
2
π
i
N
w
N
=
w
0
=
1
w^{k}=e^{k \frac{2 \pi i}{N}} \quad w^{N}=w^{0}=1
wk=ekN2πiwN=w0=1
观察上图发现:
k
=
0
,
N
,
−
N
,
2
N
,
−
2
N
.
.
.
k=0,N,-N,2N,-2N...
k=0,N,−N,2N,−2N...时,
e
k
2
π
i
N
=
e
0
2
π
i
N
=
w
0
=
1
e^{k \frac{2 \pi i}{N}} = e^{0 \frac{2 \pi i}{N}}=w^0=1
ekN2πi=e0N2πi=w0=1
k
=
1
,
N
+
1
,
−
N
+
1
,
2
N
+
1
,
−
2
N
+
1...
k=1,N+1,-N+1,2N+1,-2N+1...
k=1,N+1,−N+1,2N+1,−2N+1...时,
e
k
2
π
i
N
=
e
1
2
π
i
N
=
w
1
e^{k \frac{2 \pi i}{N}} = e^{1 \frac{2 \pi i}{N}}=w^1
ekN2πi=e1N2πi=w1
…
k
=
N
−
1
,
2
N
−
1
,
−
1
,
3
N
−
1
,
−
N
−
1...
k=N-1,2N-1,-1,3N-1,-N-1...
k=N−1,2N−1,−1,3N−1,−N−1...时,
e
k
2
π
i
N
=
e
(
N
−
1
)
2
π
i
N
=
w
N
−
1
e^{k \frac{2 \pi i}{N}} = e^{(N-1) \frac{2 \pi i}{N}}=w^{N-1}
ekN2πi=e(N−1)N2πi=wN−1
所以式
(
1.3
)
(1.3)
(1.3)为:
f
1
=
f
(
2
π
N
)
=
∑
k
=
−
∞
∞
c
k
e
k
2
π
i
N
=
(
c
0
+
c
N
+
c
−
N
+
c
2
N
+
c
−
2
N
+
⋯
)
w
0
+
(
c
1
+
c
N
+
1
+
c
2
N
+
1
+
c
−
N
+
1
+
c
−
2
N
+
1
⋯
)
w
1
+
(
c
2
+
c
N
+
2
+
c
2
N
+
2
+
c
−
N
+
2
+
c
−
2
N
+
2
⋯
)
w
2
⋯
+
(
c
N
−
1
+
c
2
N
−
1
+
c
3
N
−
1
+
c
−
1
+
c
−
N
−
1
⋯
)
w
N
−
1
(1.3)
\begin{aligned} f_{1}&=f\left(\frac{2 \pi}{N}\right)=\sum_{k=-\infty}^{\infty} c_{k} e^{k \frac{2 \pi i}{N}}\\ &=\left(c_{0}+c_{N}+c_{-N}+c_{2 N}+c_{-2 N}+\cdots\right) w^{0} \\ &\quad+\left(c_{1}+c_{N+1}+c_{2 N+1}+c_{-N+1}+c_{-2 N+1} \cdots\right) w^{1} \\ &\quad+\left(c_{2}+c_{N+2}+c_{2 N+2}+c_{-N+2}+c_{-2 N+2} \cdots\right) w^{2} \\ &\quad\quad \cdots \\ &\quad+\left(c_{N-1}+c_{2 N-1}+c_{3 N-1}+c_{-1}+c_{-N-1} \cdots\right) w^{N-1} \end{aligned}\tag{1.3}
f1=f(N2π)=k=−∞∑∞ckekN2πi=(c0+cN+c−N+c2N+c−2N+⋯)w0+(c1+cN+1+c2N+1+c−N+1+c−2N+1⋯)w1+(c2+cN+2+c2N+2+c−N+2+c−2N+2⋯)w2⋯+(cN−1+c2N−1+c3N−1+c−1+c−N−1⋯)wN−1(1.3)
结论:
f
(
2
π
N
)
f\left(\frac{2 \pi}{N}\right)
f(N2π) 的函数值, 只需要
N
N
N 个基就能得到,不需要无穷多个基, 只要得
到这
N
N
N 个基的
N
N
N 个系数就可以。
假如取 t = 2 2 π N t=2\frac{2 \pi}{N} t=2N2π带入式 ( 1.2 ) (1.2) (1.2)中:
可得:
f
2
=
f
(
2
2
π
N
)
=
(
c
0
+
c
N
+
c
−
N
+
c
2
N
+
c
−
2
N
+
⋯
)
w
0
+
(
c
1
+
c
N
+
1
+
c
2
N
+
1
+
c
−
N
+
1
+
c
−
2
N
+
1
⋯
)
w
2
+
(
c
2
+
c
N
+
2
+
c
2
N
+
2
+
c
−
N
+
2
+
c
−
2
N
+
2
⋯
)
w
4
⋯
+
(
c
N
−
1
+
c
2
N
−
1
+
c
3
N
−
1
+
c
−
1
+
c
−
N
−
1
⋯
)
w
2
(
N
−
1
)
(1.4)
\begin{aligned} f_{2}=&f\left(2 \frac{2 \pi}{N}\right)=\left(c_{0}+c_{N}+c_{-N}+c_{2 N}+c_{-2 N}+\cdots\right) w^{0} \\ &+\left(c_{1}+c_{N+1}+c_{2 N+1}+c_{-N+1}+c_{-2 N+1} \cdots\right) w^{2} \\ &+\left(c_{2}+c_{N+2}+c_{2 N+2}+c_{-N+2}+c_{-2 N+2} \cdots\right) w^{4} \\ & \cdots \\ &+\left(c_{N-1}+c_{2 N-1}+c_{3 N-1}+c_{-1}+c_{-N-1} \cdots\right) w^{2(N-1)} \end{aligned}\tag{1.4}
f2=f(2N2π)=(c0+cN+c−N+c2N+c−2N+⋯)w0+(c1+cN+1+c2N+1+c−N+1+c−2N+1⋯)w2+(c2+cN+2+c2N+2+c−N+2+c−2N+2⋯)w4⋯+(cN−1+c2N−1+c3N−1+c−1+c−N−1⋯)w2(N−1)(1.4)
同理可以求得
x
=
0
2
π
N
,
x
=
2
2
π
N
,
3
2
π
N
.
.
.
(
N
−
1
)
2
π
N
x=0\frac{2 \pi}{N},x=2\frac{2 \pi}{N},3\frac{2 \pi}{N}...(N-1)\frac{2 \pi}{N}
x=0N2π,x=2N2π,3N2π...(N−1)N2π时
f
(
x
)
f(x)
f(x)的展开形式。
小结:
w
k
w^{k}
wk 对任何整数
k
k
k,都对应
w
0
,
w
1
,
⋯
,
w
N
−
1
w^{0}, w^{1}, \cdots, w^{N-1}
w0,w1,⋯,wN−1 中的一个
所以上图中离散采样的8个点,都可以只用
w
0
,
w
1
,
⋯
,
w
N
−
1
w^{0}, w^{1}, \cdots, w^{N-1}
w0,w1,⋯,wN−1 这8个基来表示。
而
f
0
,
f
1
,
⋯
,
f
N
−
1
f_{0}, f_{1}, \cdots, f_{N-1}
f0,f1,⋯,fN−1和
w
0
,
w
1
,
⋯
,
w
N
−
1
w^{0}, w^{1}, \cdots, w^{N-1}
w0,w1,⋯,wN−1是已知,把括号中当做未知数,那么8个方程可以解得8个未知数。
此外假设傅里叶变换展开系数只包含
c
0
,
c
1
,
⋯
,
c
N
−
1
c_{0}, c_{1}, \cdots, c_{N-1}
c0,c1,⋯,cN−1,那么就有结合式
(
1.2
)
(1.2)
(1.2):
f
(
x
)
=
c
0
+
c
1
e
i
x
+
c
2
e
i
2
x
+
⋯
+
c
N
−
1
e
i
(
N
−
1
)
x
f
(
0
2
π
N
)
=
c
0
+
c
1
+
c
2
+
⋯
+
c
N
−
1
f
(
1
2
π
N
)
=
c
0
+
c
1
w
+
c
2
w
2
+
⋯
+
c
N
−
1
w
N
−
1
f
(
2
2
π
N
)
=
c
0
+
c
1
w
2
+
c
2
w
4
+
⋯
+
c
N
−
1
w
2
(
N
−
1
)
f
(
3
2
π
N
)
=
c
0
+
c
1
w
3
+
c
2
w
6
+
⋯
+
c
N
−
1
w
3
(
N
−
1
)
⋯
f
(
(
N
−
1
)
2
π
N
)
=
c
0
+
c
1
w
N
−
1
+
c
2
w
2
(
N
−
1
)
+
⋯
+
c
N
−
1
w
(
N
−
1
)
2
(1.5)
\begin{aligned} &f(x)=c_{0}+c_{1} e^{i x}+c_{2} e^{i 2 x}+\cdots+c_{N-1} e^{i(N-1) x} \\ &f\left(0 \frac{2 \pi}{N}\right)=c_{0}+c_{1}+c_{2}+\cdots+c_{N-1} \\ &f\left(1 \frac{2 \pi}{N}\right)=c_{0}+c_{1} w+c_{2} w^{2}+\cdots+c_{N-1} w^{N-1} \\ &f\left(2 \frac{2 \pi}{N}\right)=c_{0}+c_{1} w^{2}+c_{2} w^{4}+\cdots+c_{N-1} w^{2(N-1)} \\ &f\left(3 \frac{2 \pi}{N}\right)=c_{0}+c_{1} w^{3}+c_{2} w^{6}+\cdots+c_{N-1} w^{3(N-1)} \\ &\cdots \\ &f\left((N-1) \frac{2 \pi}{N}\right)=c_{0}+c_{1} w^{N-1}+c_{2} w^{2(N-1)}+\cdots+c_{N-1} w^{(N-1)^{2}} \end{aligned}\tag{1.5}
f(x)=c0+c1eix+c2ei2x+⋯+cN−1ei(N−1)xf(0N2π)=c0+c1+c2+⋯+cN−1f(1N2π)=c0+c1w+c2w2+⋯+cN−1wN−1f(2N2π)=c0+c1w2+c2w4+⋯+cN−1w2(N−1)f(3N2π)=c0+c1w3+c2w6+⋯+cN−1w3(N−1)⋯f((N−1)N2π)=c0+c1wN−1+c2w2(N−1)+⋯+cN−1w(N−1)2(1.5)
注意此时 w = e i x w=e^{ix} w=eix,与 x x x取值有关。
于是有下面矩阵关系:
[
f
0
f
1
f
2
f
3
⋮
f
N
−
1
]
=
[
1
1
1
1
⋯
1
1
w
w
2
w
3
⋯
w
N
−
1
1
w
2
w
4
w
6
⋯
w
2
(
N
−
1
)
1
w
3
w
6
w
9
⋯
w
3
(
N
−
1
)
⋮
⋮
⋮
⋮
⋮
⋮
1
w
N
−
1
w
2
(
N
−
1
)
w
3
(
N
−
1
)
⋯
w
(
N
−
1
)
2
]
[
c
0
c
1
c
2
c
3
⋮
c
N
−
1
]
(1.6)
\left[\begin{array}{c} f_{0} \\ f_{1} \\ f_{2} \\ f_{3} \\ \vdots \\ f_{N-1} \end{array}\right]=\left[\begin{array}{cccccc} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & w & w^{2} & w^{3} & \cdots & w^{N-1} \\ 1 & w^{2} & w^{4} & w^{6} & \cdots & w^{2(N-1)} \\ 1 & w^{3} & w^{6} & w^{9} & \cdots & w^{3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & w^{N-1} & w^{2(N-1)} & w^{3(N-1)} & \cdots & w^{(N-1)^{2}} \end{array}\right]\left[\begin{array}{c} c_{0} \\ c_{1} \\ c_{2} \\ c_{3} \\ \vdots \\ c_{N-1} \end{array}\right]\tag{1.6}
⎣⎢⎢⎢⎢⎢⎢⎢⎡f0f1f2f3⋮fN−1⎦⎥⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎢⎡1111⋮11ww2w3⋮wN−11w2w4w6⋮w2(N−1)1w3w6w9⋮w3(N−1)⋯⋯⋯⋯⋮⋯1wN−1w2(N−1)w3(N−1)⋮w(N−1)2⎦⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎢⎡c0c1c2c3⋮cN−1⎦⎥⎥⎥⎥⎥⎥⎥⎤(1.6)
f = F N c f=F_N c f=FNc
F N F N ∗ = N [ 1 0 0 0 ⋱ 0 0 0 1 ] F N − 1 = 1 N F N ∗ F_{N} F_{N}^{*}=N\left[\begin{array}{ccc} 1 & 0 & 0 \\ 0 & \ddots & 0 \\ 0 & 0 & 1 \end{array}\right] \quad \quad \quad \quad \quad \quad F_{N}^{-1}=\frac{1}{N} F_{N}^{*} FNFN∗=N⎣⎡1000⋱0001⎦⎤FN−1=N1FN∗
1 N [ 1 1 1 1 ⋯ 1 1 w ˉ w ˉ 2 w ˉ 3 ⋯ w ˉ N − 1 1 w ˉ 2 w ˉ 4 w ˉ 6 ⋯ w ˉ 2 ( N − 1 ) 1 w 3 w 6 w 9 ⋯ w 3 ( N − 1 ) ⋮ ⋮ ⋮ ⋮ ⋮ ⋮ 1 w ˉ N − 1 w ˉ 2 ( N − 1 ) w ˉ 3 ( N − 1 ) ⋯ w ˉ ( N − 1 ) 2 ] [ f 0 f 1 f 2 f 3 ⋮ f N − 1 ] = [ c 0 c 1 c 2 c 3 ⋮ c N − 1 ] (1.7) \frac{1}{N}\left[\begin{array}{cccccc} 1 & 1 & 1 & 1 & \cdots & 1 \\ 1 & \bar{w} & \bar{w}^{2} & \bar{w}^{3} & \cdots & \bar{w}^{N-1} \\ 1 & \bar{w}^{2} & \bar{w}^{4} & \bar{w}^{6} & \cdots & \bar{w}^{2(N-1)} \\ 1 & w^{3} & w^{6} & w^{9} & \cdots & w^{3(N-1)} \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 1 & \bar{w}^{N-1} & \bar{w}^{2(N-1)} & \bar{w}^{3(N-1)} & \cdots & \bar{w}^{(N-1)^{2}} \end{array}\right]\left[\begin{array}{c} f_{0} \\ f_{1} \\ f_{2} \\ f_{3} \\ \vdots \\ f_{N-1} \end{array}\right]=\left[\begin{array}{c} c_{0} \\ c_{1} \\ c_{2} \\ c_{3} \\ \vdots \\ c_{N-1} \end{array}\right]\tag{1.7} N1⎣⎢⎢⎢⎢⎢⎢⎢⎡1111⋮11wˉwˉ2w3⋮wˉN−11wˉ2wˉ4w6⋮wˉ2(N−1)1wˉ3wˉ6w9⋮wˉ3(N−1)⋯⋯⋯⋯⋮⋯1wˉN−1wˉ2(N−1)w3(N−1)⋮wˉ(N−1)2⎦⎥⎥⎥⎥⎥⎥⎥⎤⎣⎢⎢⎢⎢⎢⎢⎢⎡f0f1f2f3⋮fN−1⎦⎥⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎢⎡c0c1c2c3⋮cN−1⎦⎥⎥⎥⎥⎥⎥⎥⎤(1.7)
F
N
−
1
f
=
c
F_N^{-1}f=c
FN−1f=c
其中,
F
N
F_N
FN就是傅里叶矩阵,
F
N
−
1
f
=
c
F_N^{-1}f=c
FN−1f=c就是离散傅里叶变换(DFT),
F
N
c
=
f
F_Nc=f
FNc=f就是离散傅里叶逆变换(IDFT)。
书上的DFT公式:
X
[
k
]
=
∑
n
=
0
N
−
1
x
[
n
]
e
−
k
2
π
n
i
N
\quad X[k]=\sum_{n=0}^{N-1} x[n] e^{-k \frac{2 \pi n i}{N}}
X[k]=n=0∑N−1x[n]e−kN2πni
和矩阵形式对比有以下对应关系:
[
x
[
0
]
x
[
1
]
x
[
2
]
x
[
3
]
⋮
x
[
N
−
1
]
]
=
[
f
0
f
1
f
2
f
3
⋮
f
N
−
1
]
\left[\begin{array}{c} x[0] \\ x[1] \\ x[2] \\ x[3] \\ \vdots \\ x[N-1] \end{array}\right]=\left[\begin{array}{c} f_{0} \\ f_{1} \\ f_{2} \\ f_{3} \\ \vdots \\ f_{N-1} \end{array}\right]
⎣⎢⎢⎢⎢⎢⎢⎢⎡x[0]x[1]x[2]x[3]⋮x[N−1]⎦⎥⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎢⎡f0f1f2f3⋮fN−1⎦⎥⎥⎥⎥⎥⎥⎥⎤
[ X [ 0 ] X [ 1 ] X [ 2 ] X [ 3 ] ⋮ X [ N − 1 ] ] = N [ c 0 c 1 c 2 c 3 ⋮ c N − 1 ] \left[\begin{array}{c} X[0] \\ X[1] \\ X[2] \\ X[3] \\ \vdots \\ X[N-1] \end{array}\right]=N\left[\begin{array}{c} c_{0} \\ c_{1} \\ c_{2} \\ c_{3} \\ \vdots \\ c_{N-1} \end{array}\right] ⎣⎢⎢⎢⎢⎢⎢⎢⎡X[0]X[1]X[2]X[3]⋮X[N−1]⎦⎥⎥⎥⎥⎥⎥⎥⎤=N⎣⎢⎢⎢⎢⎢⎢⎢⎡c0c1c2c3⋮cN−1⎦⎥⎥⎥⎥⎥⎥⎥⎤
注意在式 ( 1.7 ) (1.7) (1.7)中, w ˉ = e − k 2 π i N \bar{w}=e^{-k \frac{2 \pi i}{N}} wˉ=e−kN2πi
例1(复数函数)
对下列函数进行DFT:
f
(
x
)
=
1
+
e
i
x
+
e
i
2
x
+
e
i
3
x
(1.8)
f(x)=1+e^{i x}+e^{i 2 x}+e^{i 3 x}\tag{1.8}
f(x)=1+eix+ei2x+ei3x(1.8)
N=4时:
f
(
0
)
=
4
f
(
1
2
π
4
)
=
f
(
2
2
π
4
)
=
f
(
3
2
π
4
)
=
0
f(0)=4 \quad f\left(1 \frac{2 \pi}{4}\right)=f\left(2 \frac{2 \pi}{4}\right)=f\left(3 \frac{2 \pi}{4}\right)=0
f(0)=4f(142π)=f(242π)=f(342π)=0
于是:
w
=
e
2
π
i
4
=
i
w=e^{\frac{2 \pi i}{4}}=i
w=e42πi=i
[ 1 1 1 1 1 w w 2 w 3 1 w 2 w 4 w 6 1 w 3 w 6 w 9 ] − 1 [ 4 0 0 0 ] = [ 1 1 1 1 ] \left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & w & w^{2} & w^{3} \\ 1 & w^{2} & w^{4} & w^{6} \\ 1 & w^{3} & w^{6} & w^{9} \end{array}\right]^{-1}\left[\begin{array}{l} 4 \\ 0 \\ 0 \\ 0 \end{array}\right]=\left[\begin{array}{l} 1 \\ 1 \\ 1 \\ 1 \end{array}\right] ⎣⎢⎢⎡11111ww2w31w2w4w61w3w6w9⎦⎥⎥⎤−1⎣⎢⎢⎡4000⎦⎥⎥⎤=⎣⎢⎢⎡1111⎦⎥⎥⎤
因此:
c
0
=
1
,
c
1
=
1
,
c
2
=
1
,
c
3
=
1
c_0=1,c_1=1,c_2=1,c_3=1
c0=1,c1=1,c2=1,c3=1
即:
f
(
x
)
=
1
+
e
i
x
+
e
i
2
x
+
e
i
3
x
f(x)=1+e^{i x}+e^{i 2 x}+e^{i 3 x}
f(x)=1+eix+ei2x+ei3x
注意:式
(
1.5
)
(1.5)
(1.5)中
f
(
x
)
f(x)
f(x)在每个采样点展开形式不一样(
w
0
,
w
1
,
⋯
,
w
N
−
1
w^{0}, w^{1}, \cdots, w^{N-1}
w0,w1,⋯,wN−1),但是系数是一样的。也就可以确定函数的展开式
f
(
x
)
=
c
0
+
c
1
e
i
x
+
c
2
e
i
2
x
+
⋯
+
c
N
−
1
e
i
(
N
−
1
)
x
f(x)=c_{0}+c_{1} e^{i x}+c_{2} e^{i 2 x}+\cdots+c_{N-1} e^{i(N-1) x}
f(x)=c0+c1eix+c2ei2x+⋯+cN−1ei(N−1)x系数。
N=3时:
f
(
0
)
=
4
f
(
2
π
3
)
=
1
f
(
2
2
π
3
)
=
1
f(0)=4 \quad f\left(\frac{2 \pi}{3}\right)=1 \quad f\left(2 \frac{2 \pi}{3}\right)=1
f(0)=4f(32π)=1f(232π)=1
于是:
w
=
e
2
π
i
3
=
−
1
2
+
3
2
i
w=e^{\frac{2 \pi i}{3}}=-\frac{1}{2}+\frac{\sqrt{3}}{2} i
w=e32πi=−21+23i
[
1
1
1
1
w
w
2
1
w
2
w
4
]
−
1
[
4
1
1
]
=
[
2
1
1
]
\left[\begin{array}{ccc} 1 & 1 & 1 \\ 1 & w & w^{2} \\ 1 & w^{2} & w^{4} \end{array}\right]^{-1}\left[\begin{array}{l} 4 \\ 1 \\ 1 \end{array}\right]=\left[\begin{array}{l} 2 \\ 1 \\ 1 \end{array}\right]
⎣⎡1111ww21w2w4⎦⎤−1⎣⎡411⎦⎤=⎣⎡211⎦⎤
因此:
c
0
=
2
,
c
1
=
1
,
c
2
=
1
c_0=2,c_1=1,c_2=1
c0=2,c1=1,c2=1
即:
f
(
x
)
=
2
+
e
i
x
+
e
i
2
x
f(x)=2+e^{i x}+e^{i 2 x}
f(x)=2+eix+ei2x
而实际上
c
0
+
c
3
=
2
,
c
1
=
1
,
c
2
=
1
c_0+c_3=2,c_1=1,c_2=1
c0+c3=2,c1=1,c2=1。假设傅里叶变换展开系数只包含
c
0
,
c
1
,
⋯
,
c
N
−
1
c_{0}, c_{1}, \cdots, c_{N-1}
c0,c1,⋯,cN−1就只能解得合并的结果。
N=6时:
f
(
0
)
=
4
f
(
1
2
π
6
)
=
3
i
f
(
2
2
π
6
)
=
1
f
(
3
2
π
6
)
=
0
f
(
4
2
π
6
)
=
1
f
(
4
2
π
6
)
=
−
3
i
\begin{aligned} &f(0)=4 \quad f\left(1 \frac{2 \pi}{6}\right)=\sqrt{3} i \quad f\left(2 \frac{2 \pi}{6}\right)=1 \\ &f\left(3 \frac{2 \pi}{6}\right)=0 \quad f\left(4 \frac{2 \pi}{6}\right)=1 \quad f\left(4 \frac{2 \pi}{6}\right)=-\sqrt{3} i \end{aligned}
f(0)=4f(162π)=3if(262π)=1f(362π)=0f(462π)=1f(462π)=−3i
于是:
w
=
e
2
π
i
6
=
1
2
+
3
2
i
w=e^{\frac{2 \pi i}{6}}=\frac{1}{2}+\frac{\sqrt{3}}{2} i
w=e62πi=21+23i
W 6 − 1 [ 4 3 i 1 0 1 − 3 i ] = [ 1 1 1 1 0 0 ] W_{6}^{-1}\left[\begin{array}{c} 4 \\ \sqrt{3} i \\ 1 \\ 0 \\ 1 \\ -\sqrt{3} i \end{array}\right]=\left[\begin{array}{l} 1 \\ 1 \\ 1 \\ 1 \\ 0 \\ 0 \end{array}\right] W6−1⎣⎢⎢⎢⎢⎢⎢⎡43i101−3i⎦⎥⎥⎥⎥⎥⎥⎤=⎣⎢⎢⎢⎢⎢⎢⎡111100⎦⎥⎥⎥⎥⎥⎥⎤
因此,
c
0
=
1
,
c
1
=
1
,
c
2
=
1
,
c
3
=
1
,
c
4
=
0
,
c
5
=
0
c_0=1,c_1=1,c_2=1,c_3=1,c_4=0,c_5=0
c0=1,c1=1,c2=1,c3=1,c4=0,c5=0
即:
f
(
x
)
=
1
+
e
i
x
+
e
i
2
x
+
e
i
3
x
+
0
e
i
4
x
+
0
e
i
5
x
f(x)=1+e^{i x}+e^{i 2 x}+e^{i 3 x}+0e^{i 4 x}+0e^{i 5 x}
f(x)=1+eix+ei2x+ei3x+0ei4x+0ei5x
例2(实值函数)
对下列函数进行DFT:
f
(
x
)
=
1
+
cos
(
x
)
+
cos
(
2
x
)
(1.9)
f(x)=1+\cos (x)+\cos (2 x)\tag{1.9}
f(x)=1+cos(x)+cos(2x)(1.9)
欧拉公式可知:
cos
θ
=
1
2
(
e
i
θ
+
e
−
i
θ
)
sin
θ
=
−
1
2
i
(
e
i
θ
−
e
−
i
θ
)
\begin{aligned} &\cos \theta=\frac{1}{2}\left(e^{i \theta}+e^{-i \theta}\right) \\ &\sin \theta=-\frac{1}{2} i\left(e^{i \theta}-e^{-i \theta}\right) \end{aligned}
cosθ=21(eiθ+e−iθ)sinθ=−21i(eiθ−e−iθ)
所以式
(
1.9
)
(1.9)
(1.9)可转为:
f
(
x
)
=
1
2
e
−
i
2
x
+
1
2
e
−
i
x
+
1
+
1
2
e
i
x
+
1
2
e
i
2
x
f(x)=\frac{1}{2} e^{-i 2 x}+\frac{1}{2} e^{-i x}+1+\frac{1}{2} e^{i x}+\frac{1}{2} e^{i 2 x}
f(x)=21e−i2x+21e−ix+1+21eix+21ei2x
后面的DFT和例1一样。
例3
例1和例2都是已知函数,对其采样,进行DFT。
例3未知函数,在给出采样点情况下求DFT。
现在,不假设傅里叶变换展开系数只包含
c
0
,
c
1
,
⋯
,
c
N
−
1
c_{0}, c_{1}, \cdots, c_{N-1}
c0,c1,⋯,cN−1
已知周期(
T
=
2
π
T=2\pi
T=2π函数的4个采样点值:
[
4
0
0
0
]
\left[\begin{array}{l} 4 \\ 0 \\ 0 \\ 0 \end{array}\right]
⎣⎢⎢⎡4000⎦⎥⎥⎤
则:
w
=
e
2
π
i
4
=
i
w=e^{\frac{2 \pi i}{4}}=i
w=e42πi=i
f ( x ) : { f ( 0 2 π 4 ) = 4 f ( 1 2 π 4 ) = 0 f ( 2 2 π 4 ) = 0 f ( 3 2 π 4 ) = 0 \begin{array}{r} f(x):\left\{\begin{aligned} f\left(0 \frac{2 \pi}{4}\right)=4 \\ f\left(1 \frac{2 \pi}{4}\right)=0 \\ f\left(2 \frac{2 \pi}{4}\right)=0 \\ f\left(3 \frac{2 \pi}{4}\right)=0 \end{aligned}\right. \end{array} f(x):⎩⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎧f(042π)=4f(142π)=0f(242π)=0f(342π)=0
类似式 ( 1.3 ) (1.3) (1.3)和 ( 1.4 ) (1.4) (1.4)的求法:
f ( x ) = ∑ k = − ∞ ∞ c k e i k x f(x)=\sum_{k=-\infty}^{\infty} c_{k} e^{i k x} f(x)=k=−∞∑∞ckeikx
f ( 0 2 π 4 ) = ( ⋯ + c − 4 + c 0 + c 4 + ⋯ ) w 0 + ( ⋯ + c − 3 + c 1 + c 5 + ⋯ ) w 0 + ( ⋯ + c − 2 + c 2 + c 6 + ⋯ ) w 0 + ( ⋯ + c − 1 + c 3 + c 7 + ⋯ ) w 0 \begin{aligned} f\left(0 \frac{2 \pi}{4}\right) &=\left(\cdots+c_{-4}+c_{0}+c_{4}+\cdots\right) w^{0} \\ &+\left(\cdots+c_{-3}+c_{1}+c_{5}+\cdots\right) w^{0} \\ &+\left(\cdots+c_{-2}+c_{2}+c_{6}+\cdots\right) w^{0} \\ &+\left(\cdots+c_{-1}+c_{3}+c_{7}+\cdots\right) w^{0} \end{aligned} f(042π)=(⋯+c−4+c0+c4+⋯)w0+(⋯+c−3+c1+c5+⋯)w0+(⋯+c−2+c2+c6+⋯)w0+(⋯+c−1+c3+c7+⋯)w0
f ( 1 2 π 4 ) = ( ⋯ + c − 4 + c 0 + c 4 + ⋯ ) w 0 + ( ⋯ + c − 3 + c 1 + c 5 + ⋯ ) w 1 + ( ⋯ + c − 2 + c 2 + c 6 + ⋯ ) w 2 + ( ⋯ + c − 1 + c 3 + c 7 + ⋯ ) w 3 \begin{aligned} f\left(1 \frac{2 \pi}{4}\right)=&\left(\cdots+c_{-4}+c_{0}+c_{4}+\cdots\right) w^{0} \\ +&\left(\cdots+c_{-3}+c_{1}+c_{5}+\cdots\right) w^{1} \\ &+\left(\cdots+c_{-2}+c_{2}+c_{6}+\cdots\right) w^{2} \\ &+\left(\cdots+c_{-1}+c_{3}+c_{7}+\cdots\right) w^{3} \end{aligned} f(142π)=+(⋯+c−4+c0+c4+⋯)w0(⋯+c−3+c1+c5+⋯)w1+(⋯+c−2+c2+c6+⋯)w2+(⋯+c−1+c3+c7+⋯)w3
f ( 2 2 π 4 ) = ( ⋯ + c − 4 + c 0 + c 4 + ⋯ ) w 0 + ( ⋯ + c − 3 + c 1 + c 5 + ⋯ ) w 2 + ( ⋯ + c − 2 + c 2 + c 6 + ⋯ ) w 4 + ( ⋯ + c − 1 + c 3 + c 7 + ⋯ ) w 6 \begin{aligned} f\left(2 \frac{2 \pi}{4}\right) &=\left(\cdots+c_{-4}+c_{0}+c_{4}+\cdots\right) w^{0} \\ &+\left(\cdots+c_{-3}+c_{1}+c_{5}+\cdots\right) w^{2} \\ &+\left(\cdots+c_{-2}+c_{2}+c_{6}+\cdots\right) w^{4} \\ &+\left(\cdots+c_{-1}+c_{3}+c_{7}+\cdots\right) w^{6} \end{aligned} f(242π)=(⋯+c−4+c0+c4+⋯)w0+(⋯+c−3+c1+c5+⋯)w2+(⋯+c−2+c2+c6+⋯)w4+(⋯+c−1+c3+c7+⋯)w6
f ( 3 2 π 4 ) = ( ⋯ + c − 4 + c 0 + c 4 + ⋯ ) w 0 + ( ⋯ + c − 3 + c 1 + c 5 + ⋯ ) w 3 + ( ⋯ + c − 2 + c 2 + c 6 + ⋯ ) w 6 + ( ⋯ + c − 1 + c 3 + c 7 + ⋯ ) w 9 \begin{aligned} f\left(3 \frac{2 \pi}{4}\right)=&\left(\cdots+c_{-4}+c_{0}+c_{4}+\cdots\right) w^{0} \\ &+\left(\cdots+c_{-3}+c_{1}+c_{5}+\cdots\right) w^{3} \\ &+\left(\cdots+c_{-2}+c_{2}+c_{6}+\cdots\right) w^{6} \\ &+\left(\cdots+c_{-1}+c_{3}+c_{7}+\cdots\right) w^{9} \end{aligned} f(342π)=(⋯+c−4+c0+c4+⋯)w0+(⋯+c−3+c1+c5+⋯)w3+(⋯+c−2+c2+c6+⋯)w6+(⋯+c−1+c3+c7+⋯)w9
类似式
(
1.6
)
(1.6)
(1.6),但是不假设傅里叶变换展开系数只包含
c
0
,
c
1
,
⋯
,
c
N
−
1
c_{0}, c_{1}, \cdots, c_{N-1}
c0,c1,⋯,cN−1,于是有:
[
f
(
0
2
π
4
)
f
(
1
2
π
4
)
f
(
2
2
π
4
)
f
(
3
2
π
4
)
]
=
[
1
1
1
1
1
w
w
2
w
3
1
w
2
w
4
w
6
1
w
3
w
6
w
9
]
[
(
⋯
+
c
−
4
+
c
0
+
c
4
+
⋯
)
(
⋯
+
c
−
3
+
c
1
+
c
5
+
⋯
)
(
⋯
+
c
−
2
+
c
2
+
c
6
+
⋯
)
(
⋯
+
c
−
1
+
c
3
+
c
7
+
⋯
)
]
\left[\begin{array}{c} f\left(0 \frac{2 \pi}{4}\right) \\ f\left(1 \frac{2 \pi}{4}\right) \\ f\left(2 \frac{2 \pi}{4}\right) \\ f\left(3 \frac{2 \pi}{4}\right) \end{array}\right]=\left[\begin{array}{cccc} 1 & 1 & 1 & 1 \\ 1 & w & w^{2} & w^{3} \\ 1 & w^{2} & w^{4} & w^{6} \\ 1 & w^{3} & w^{6} & w^{9} \end{array}\right]\left[\begin{array}{l} \left(\cdots+c_{-4}+c_{0}+c_{4}+\cdots\right) \\ \left(\cdots+c_{-3}+c_{1}+c_{5}+\cdots\right) \\ \left(\cdots+c_{-2}+c_{2}+c_{6}+\cdots\right) \\ \left(\cdots+c_{-1}+c_{3}+c_{7}+\cdots\right) \end{array}\right]
⎣⎢⎢⎡f(042π)f(142π)f(242π)f(342π)⎦⎥⎥⎤=⎣⎢⎢⎡11111ww2w31w2w4w61w3w6w9⎦⎥⎥⎤⎣⎢⎢⎡(⋯+c−4+c0+c4+⋯)(⋯+c−3+c1+c5+⋯)(⋯+c−2+c2+c6+⋯)(⋯+c−1+c3+c7+⋯)⎦⎥⎥⎤
可以发现
c
c
c是按模4取得。
求解上式可得:
c
=
[
1
1
1
1
]
=
[
(
⋯
+
c
−
4
+
c
0
+
c
4
+
⋯
)
(
⋯
+
c
−
3
+
c
1
+
c
5
+
⋯
)
(
⋯
+
c
−
2
+
c
2
+
c
6
+
⋯
)
(
⋯
+
c
−
1
+
c
3
+
c
7
+
⋯
)
]
c=\left[\begin{array}{l} 1 \\ 1 \\ 1 \\ 1 \end{array}\right]=\left[\begin{array}{l} \left(\cdots+c_{-4}+c_{0}+c_{4}+\cdots\right) \\ \left(\cdots+c_{-3}+c_{1}+c_{5}+\cdots\right) \\ \left(\cdots+c_{-2}+c_{2}+c_{6}+\cdots\right) \\ \left(\cdots+c_{-1}+c_{3}+c_{7}+\cdots\right) \end{array}\right]
c=⎣⎢⎢⎡1111⎦⎥⎥⎤=⎣⎢⎢⎡(⋯+c−4+c0+c4+⋯)(⋯+c−3+c1+c5+⋯)(⋯+c−2+c2+c6+⋯)(⋯+c−1+c3+c7+⋯)⎦⎥⎥⎤
于是下面求得的函数都满足
c
c
c
(
1
)
:
f
(
x
)
=
1
+
e
i
x
+
e
i
2
x
+
e
i
3
x
(
2
)
:
f
(
x
)
=
1
+
e
i
x
+
e
i
2
x
+
e
−
i
x
(
3
)
:
f
(
x
)
=
1
2
e
−
i
x
+
1
+
e
i
x
+
e
i
2
x
+
1
2
e
i
3
x
(
4
)
:
f
(
x
)
=
1
+
1
3
e
i
x
+
1
3
e
i
5
x
+
1
3
e
i
9
x
+
e
i
2
x
+
e
i
3
x
\begin{aligned} &(1):f(x)=1+e^{i x}+e^{i 2 x}+e^{i 3 x} \\ &(2):f(x)=1+e^{i x}+e^{i 2 x}+e^{-i x} \\ &(3):f(x)=\frac{1}{2} e^{-i x}+1+e^{i x}+e^{i 2 x}+\frac{1}{2} e^{i 3 x} \\ &(4):f(x)=1+\frac{1}{3} e^{i x}+\frac{1}{3} e^{i 5 x}+\frac{1}{3} e^{i 9 x}+e^{i 2 x}+e^{i 3 x} \end{aligned}
(1):f(x)=1+eix+ei2x+ei3x(2):f(x)=1+eix+ei2x+e−ix(3):f(x)=21e−ix+1+eix+ei2x+21ei3x(4):f(x)=1+31eix+31ei5x+31ei9x+ei2x+ei3x
比如(4):
c
0
=
1
c
1
=
1
3
,
c
5
=
1
3
,
c
9
=
1
3
c
2
=
1
c
3
=
1
\begin{aligned} &c_0=1\\ &c_1=\frac{1}{3},c_5=\frac{1}{3},c_9=\frac{1}{3}\\ &c_2=1\\ &c_3=1 \end{aligned}
c0=1c1=31,c5=31,c9=31c2=1c3=1
既然存在无限多函数组合,所以我们假设傅里叶变换展开系数只包含
c
0
,
c
1
,
⋯
,
c
N
−
1
c_{0}, c_{1}, \cdots, c_{N-1}
c0,c1,⋯,cN−1,于是有:
c
=
[
1
1
1
1
]
=
[
c
0
c
1
c
2
c
3
]
c=\left[\begin{array}{l} 1 \\ 1 \\ 1 \\ 1 \end{array}\right]=\left[\begin{array}{l} c_0 \\ c_1 \\ c_2 \\ c_3 \end{array}\right]
c=⎣⎢⎢⎡1111⎦⎥⎥⎤=⎣⎢⎢⎡c0c1c2c3⎦⎥⎥⎤
f ( x ) = 1 + e i x + e i 2 x + e i 3 x f(x)=1+e^{i x}+e^{i 2 x}+e^{i 3 x} f(x)=1+eix+ei2x+ei3x
所以当原函数存在高频,就比如(4)存在 e i 5 x , e i 9 x e^{i 5 x}, e^{i 9 x} ei5x,ei9x这种函数就无法得出,因为我在上面假设情况下总是做低频处理。所以DFT的缺点就是丢失了高频信号,但是当采样点足够多,比如原函数最高频率对应就为 e i 9 x e^{i 9 x} ei9x,而采样点数目刚好为9个,就可以完整恢复原函数。