Time Limit: 2 second(s) | Memory Limit: 32 MB |
A group of N Internet Service Provider companies (ISPs) use a private communication channel that has a maximum capacity of C traffic units per second. Each company transfers T traffic units per second through the channel and gets a profit that is directly proportional to the factor T(C - T*N). The problem is to compute the smallest value of T that maximizes the total profit the N ISPs can get from using the channel. Notice that N, C, T, and the optimal T are integer numbers.
Input
Input starts with an integer T (≤ 20), denoting the number of test cases.
Each case starts with a line containing two integers N and C (0 ≤ N, C ≤ 109).
Output
For each case, print the case number and the minimum possible value of T that maximizes the total profit. The result should be an integer.
Sample Input | Output for Sample Input |
6 1 0 0 1 4 3 2 8 3 27 25 1000000000 | Case 1: 0 Case 2: 0 Case 3: 0 Case 4: 2 Case 5: 4 Case 6: 20000000 |
解题思路
题目大意给出N,C,满足数学式T*(C-N*T),问当T取什么值(整数值)时能让这个函数式的值最大。(T取满足条件的最小值)。
题解:很明显,就是一个求一元二次方程最高点横坐标的问题。顶点坐标(-b/(2*a),(4*a*c-b*b)/(4*a))。要注意的地方是求出T后,是向下取整的,最大的整数最高点可能落在T+1上,这里需要比较一下。
#include<stdio.h>
#include<string.h>
#include<algorithm>
using namespace std;
int main()
{
int cn=0;
int t;
scanf("%d",&t);
while(t--)
{
long long n,m;
scanf("%lld%lld",&n,&m);
printf("Case %d: ",++cn);
if(n==0||m==0)
{
printf("0\n");
}
else
{
long long cm1,cm,a1,a2;
cm=(m/(2*n));
a1=(-n*cm*cm)+m*cm;
cm1=cm+1;
a2=(-n*cm1*cm1)+m*cm1;
if(a2>a1)
{
printf("%lld\n",cm1);
}
else
printf("%lld\n",cm);
}
}
return 0;
}