漫步校园
Time Limit: 2000/1000 MS (Java/Others) Memory Limit: 65536/32768 K (Java/Others)
Total Submission(s): 3764 Accepted Submission(s): 1146
Problem Description
LL最近沉迷于AC不能自拔,每天寝室、机房两点一线。由于长时间坐在电脑边,缺乏运动。他决定充分利用每次从寝室到机房的时间,在校园里散散步。整个HDU校园呈方形布局,可划分为n*n个小方格,代表各个区域。例如LL居住的18号宿舍位于校园的西北角,即方格(1,1)代表的地方,而机房所在的第三实验楼处于东南端的(n,n)。因有多条路线可以选择,LL希望每次的散步路线都不一样。另外,他考虑从A区域到B区域仅当存在一条从B到机房的路线比任何一条从A到机房的路线更近(否则可能永远都到不了机房了…)。现在他想知道的是,所有满足要求的路线一共有多少条。你能告诉他吗?
Input
每组测试数据的第一行为n(2=<n<=50),接下来的n行每行有n个数,代表经过每个区域所花的时间t(0<t<=50)(由于寝室与机房均在三楼,故起点与终点也得费时)。
Output
针对每组测试数据,输出总的路线数(小于2^63)。
Sample Input
3 1 2 3 1 2 3 1 2 3 3 1 1 1 1 1 1 1 1 1
Sample Output
1 6
Author
LL
Source
解题思路:
先要记录每个点到终点的最短距离,用深搜记录最短路每个点有多少条路。
#include<stdio.h>
#include<string.h>
#include<algorithm>
#include<queue>
#define INF 0x3f3f3f3f
using namespace std;
struct node
{
int x,y;
int time;
};
int n;
int dx[4]={0,0,-1,1};
int dy[4]={-1,1,0,0};
int map[60][60];
long long v[60][60],dp[60][60];
void BFS()//找到每个点到(n,n)的最短距离
{
int i,j;
node f1,f2;
f1.x=n;
f1.y=n;
f1.time=map[n][n];
queue<node>q;
v[n][n]=map[n][n];
q.push(f1);
while(!q.empty())
{
f1=q.front();
q.pop();
for(i=0;i<4;i++)
{
f2.x=f1.x+dx[i];
f2.y=f1.y+dy[i];
if(f2.x>0&&f2.y>0&&f2.x<=n&&f2.y<=n)
{
f2.time=f1.time+map[f2.x][f2.y];
if(f2.time<v[f2.x][f2.y])
{
v[f2.x][f2.y]=f2.time;
q.push(f2);
}
}
}
}
}
long long DFS(int x,int y)
{
if(x==n&&y==n)
{
return 1;
}
if(dp[x][y]!=0)
{
return dp[x][y];
}
int x1,y1;
long long sum=0;
for(int i=0;i<4;i++)
{
x1=x+dx[i];
y1=y+dy[i];
if(x1>=1&&y1>=1&&x1<=n&&y1<=n)
{
if(v[x][y]>v[x1][y1])
{
sum+=DFS(x1,y1);
dp[x][y]=sum;
}
}
}
return sum;
}
int main()
{
int i,j;
while(scanf("%d",&n)!=EOF)
{
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
scanf("%d",&map[i][j]);
v[i][j]=INF;
}
}
BFS();
memset(dp,0,sizeof(dp));
printf("%lld\n",DFS(1,1));
}
return 0;
}