pycharm中导入MySQLdb 报错问题

在Python3.6环境中,使用PyCharm时遇到导入MySQLdb报错。通过下载MySQL_python-1.2.5-cp27-none-win_amd64.whl文件并放入Python安装目录的Scripts文件夹下,尝试用pip安装但因版本不匹配失败。通过查看Python支持的PEP425标签,将whl文件名修改为匹配Python3.6的版本号,然后成功安装,解决了导入MySQLdb的问题。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

遇见的问题
1、使用环境:python3.6
2、pycharm中导入MySQLdb 报错

解决方法
1、下载一个 MySQL_python-1.2.5-cp27-none-win_amd64.whl 下载地址:
https://pan.baidu.com/s/1WH1s1BUI3vvFoeICprN7Sg 密码: 3c6w

2、把此文件放到python安装目录Scripts 下,比如我自己安装在 D:\python3.6\Scripts

3、在此文件夹下,输入cmd打开cmd

4、输入pip install MySQL_python-1.2.5-cp27-none-win_amd64.whl

5、此时报不支持的版本
安装MySQL_python-1.2.5-cp27-none-win_amd64.whl is not a supported wheel on this platform.

6、查看python的版本

import pip
print(pip.pep425tags.get_supported())
在这里插入图片描述

7、强行把MySQL_python-1.2.5-cp27-none-win_amd64.whl 改名字为
MySQL_python-1.2.5-cp36-none-win32.whl 然后再安装
在这里插入图片描述
8、安装成功后,则导入import MySQLdb 不报错了
在这里插入图片描述

### PyCharm 配置和导入数据库教程 在软件开发过程PyCharm 提供了强大的功能来帮助开发者管理数据库[^1]。以下是关于如何在 PyCharm 配置数据源并完成数据库导入的具体方法。 #### 一、配置数据源 为了能够在 PyCharm 操作数据库,首先需要正确配置数据源: 1. **打开 Database 工具窗口** 在 PyCharm 的顶部菜单栏找到 `View` -> `Tool Windows` -> `Database`,这会显示 Database 工具窗口。 2. **添加新的数据源** 点击工具窗口左上角的加号按钮 (`+`),然后选择要连接的数据库类型(例如 MySQL)。此时会出现一个配置窗口[^4]。 3. **填写数据库参数** 在弹出的数据源配置窗口,输入必要的信息,包括主机名、端口号、用户名、密码以及具体的数据库名称。完成后可以点击 `Test Connection` 来验证是否能成功建立链接。 如果遇到无法正常连接的情况,则可能是因为缺少某些驱动程序或者模块未安装完全。例如,在 Python 环境下运行 Django 和 MySQL 组合时可能会报错提示找不到 `MySQLdb` 模块,这时可以通过命令行进入对应路径手动安装所需依赖项[^2]。 #### 二、执行SQL脚本与查看结果 一旦完成了上述步骤的设置过程就可以开始利用 PyCharm 执行 SQL 查询语句了: - 右键单击已创建好的数据源节点,选择新建查询控制台(`New Console`)。 - 输入标准SQL语法指令后按回车即可看到返回的结果集展示于下方表格区域之。 此外还支持诸如导出/导入表结构及其内容等多种实用特性。 #### 三、实现数据库导入 对于已有外部文件形式存在的备份资料而言(比如 .sql 文件),可以直接通过如下方式将其恢复至目标库内: ```sql USE your_database_name; SOURCE path_to_your_sql_file.sql; ``` 将以上两行代码复制粘贴到新开启的 Query Console 当前活动编辑器里边去执行就可以了。注意替换其 placeholders 成实际使用的值。 --- ### 示例代码片段 下面给出一段简单的 Python 脚本来演示如何借助 pymysql 库从远程服务器拉取数据并保存成本地 CSV 文件的例子作为补充说明材料之一部分呈现出来给读者朋友们参考借鉴之用吧! ```python import pymysql.cursors import csv connection = pymysql.connect(host='localhost', user='your_username', password='your_password', db='your_dbname', charset='utf8mb4', cursorclass=pymysql.cursors.DictCursor) try: with connection.cursor() as cursor: sql = "SELECT * FROM employees" cursor.execute(sql) result = cursor.fetchall() finally: connection.close() keys = result[0].keys() with open('employees.csv', 'w', newline='', encoding="utf-8") as output_file: dict_writer = csv.DictWriter(output_file, keys) dict_writer.writeheader() dict_writer.writerows(result) ``` 此段落仅用于举例目的,并非直接关联前面提到的内容;但它展示了另一种处理大量记录的有效手段——即先读再写入本地存储介质当去以便后续进一步分析研究等工作流程环节得以顺利开展下去[^3]。 ---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值