目标
在本章中
- 我们将重温手写数据 OCR,但将使用 SVM 而不是 kNN。
手写数字的 OCR
在 kNN 中,我们直接使用像素强度作为特征向量。这次我们将使用方向梯度直方图(HOG)作为特征向量。
在找到 HOG 之前,我们先利用图像的二阶矩对图像进行纠偏。因此,我们首先定义了一个函数 deskew(),该函数用于对数字图像进行纠偏。下面是 deskew() 函数:
def deskew(img):
m = cv.moments(img)
if abs(m['mu02']) < 1e-2:
return img.copy()
skew = m['mu11']/m['mu02']
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
img = cv.warpAffine(img,M,(SZ, SZ),flags=affine_flags)
return img
下图显示了上述应用于图像的纠偏功能。左图为原始图像,右图为纠偏后的图像。
接下来,我们必须找到每个单元格的 HOG 描述符。为此,我们要找到每个单元格在 X 和 Y 方向上的 Sobel 导数。然后找出每个像素的梯度大小和方向。该梯度被量化为 16 个整数值。将该图像划分为四个子方格。对于每个子方格,计算方向的直方图(16 个分区),并用它们的大小加权。这样,每个子方格就会得到一个包含 16 个值的向量。四个这样的向量(四个子方格的向量)加起来就是一个包含 64 个值的特征向量。这就是我们用来训练数据的特征向量。
def hog(img):
gx = cv.Sobel(img, cv.CV_32F, 1, 0)
gy = cv.Sobel(img, cv.CV_32F, 0, 1)
mag, ang = cv.cartToPolar(gx, gy)
bins = np.int32(bin_n*ang/(2*np.pi)) # 将 bin 值量化为 (0...16)
bin_cells = bins[:10,:10],bins[10:,:10],bins[:10,10:],bins[10:,10:]
mag_cells = mag[:10,:10],mag[10:,:10],mag[:10,10:],mag[10:,10:]
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)] (bin_cells, mag_cells)
hist = np.hstack(hists) # hist 是一个 64 位向量
return hist
最后,与前一种情况一样,我们首先将大数据集分割成单个单元格。每个数字保留 250 个单元作为训练数据,其余 250 个数据作为测试数据。完整代码如下,你也可以从这里下载:
#!/usr/bin/env python
import cv2 as cv
import numpy as np
SZ=20
bin_n = 16 # 频道数
affine_flags = cv.WARP_INVERSE_MAP|cv.INTER_LINEAR
def deskew(img):
m = cv.moments(img)
if abs(m['mu02']) < 1e-2:
return img.copy()
skew = m['mu11']/m['mu02']
M = np.float32([[1, skew, -0.5*SZ*skew], [0, 1, 0]])
img = cv.warpAffine(img,M,(SZ, SZ),flags=affine_flags)
return img
def hog(img):
gx = cv.Sobel(img, cv.CV_32F, 1, 0)
gy = cv.Sobel(img, cv.CV_32F, 0, 1)
mag, ang = cv.cartToPolar(gx, gy)
bins = np.int32(bin_n*ang/(2*np.pi)) # 将 bin 值量化为 (0...16)
bin_cells = bins[:10,:10], bins[10:,:10], bins[:10,10:], bins[10:,10:]
mag_cells = mag[:10,:10], mag[10:,:10], mag[:10,10:], mag[10:,10:]
hists = [np.bincount(b.ravel(), m.ravel(), bin_n) for b, m in zip(bin_cells, mag_cells)]
hist = np.hstack(hists) # hist 是一个 64 位向量
return hist
img = cv.imread(cv.samples.findFile('digits.png'),0)
if img is None:
raise Exception("we need the digits.png image from samples/data here !")
cells = [np.hsplit(row,100) for row in np.vsplit(img,50)]
# 前半部分为 trainData,其余为 testData
train_cells = [ i[:50] for i in cells ]
test_cells = [ i[50:] for i in cells]
deskewed = [list(map(deskew,row)) for row in train_cells]
hogdata = [list(map(hog,row)) for row in deskewed]
trainData = np.float32(hogdata).reshape(-1,64)
responses = np.repeat(np.arange(10),250)[:,np.newaxis]
svm = cv.ml.SVM_create()
svm.setKernel(cv.ml.SVM_LINEAR)
svm.setType(cv.ml.SVM_C_SVC)
svm.setC(2.67)
svm.setGamma(5.383)
svm.train(trainData, cv.ml.ROW_SAMPLE, responses)
svm.save('svm_data.dat')
deskewed = [list(map(deskew,row)) for row in test_cells]
hogdata = [list(map(hog,row)) for row in deskewed]
testData = np.float32(hogdata).reshape(-1,bin_n*4)
result = svm.predict(testData)[1]
mask = result==responses
correct = np.count_nonzero(mask)
print(correct*100.0/result.size)
这项特殊技术为我带来了近 94% 的准确率。您可以尝试 SVM 不同参数的不同值,以检查是否有可能获得更高的准确率。或者,您也可以阅读这方面的技术论文,并尝试将其付诸实施。
其他资源
练习
- OpenCV 样本包含 digits.py,它对上述方法稍作改进,以获得更好的结果。它还包含参考资料。请查看并理解它。