LLVM SSA 介绍

最近做研究碰到了一个难题,需要对程序变量按生命期进行重命名。考虑到 SSA 中一个变量在不同的程序分支中赋值时会进行重命名,因此打算以此作为参考,看看能否采取同样的方法达到目的。由于之前看到的文档中都说 LLVM IR 是 SSA 形式的,然而在用 Clang 打印生成 LLVM IR 后发现它并不是 SSA 形式,百思不得其解。本篇文章是查阅资料后对此问题的解答,顺便介绍了 LLVM SSA 的相关知识。

SSA 介绍

1 概念

首先看一下维基对静态单一赋值(SSA)形式的定义:

In compiler design, static single assignment form (often abbreviated as SSA form or simply SSA) is a property of an intermediate representation (IR), which requires that each variable is assigned exactly once, and every variable is defined before it is used.

– From Wikipedia

从上面的描述可以看出,SSA 形式的 IR 主要特征是每个变量只赋值一次。相比而言,非 SSA 形式的 IR 里一个变量可以赋值多次。为了得到 SSA 形式的 IR,起初的 IR 中的变量会被分割成不同的版本(version),每个定义(definition:静态分析术语,可以理解为赋值)对应着一个版本。在教科书中,通常会在旧的变量名后加上下标构成新的变量名,这也就是各个版本的名字。显然,在 SSA 形式中,UD 链(Use-Define Chain)是十分明确的。也就是说,变量的每一个使用(use:静态分析术语,可以理解为变量的读取)点只有唯一一个定义可以到达。

注释:关于 UD 链的详细解释,可以参考维基给出的说明 Use-define chain 。在这里我们只需要知道,编译器在做常量传播、公共子表达式删除等优化之前,必须获取程序的 UD 链和 DU 链。显然,UD 链越简洁,越方便做编译优化。

2 为什么要使用 SSA ?

SSA 通过简化程序中变量的特性,可以同时达到两种目的:第一,可以简化很多编译优化方法的过程;第二,对很多编译优化方法来说,可以获得更好的优化结果。下面给出一个例子:

 y := 1
 y := 2
 x := y

显然,我们一眼就可以看出,上述代码第一行的赋值行为是多余的,第三行使用的 y 值来自于第二行中的赋值。对于采用非 SSA 形式 IR 的编译器来说,它需要做数据流分析(具体来说是到达-定义分析)来确定选取哪一行的 y 值。但是对于 SSA 形式来说,就不存在这个问题了。如下所示:

 y1 := 1
 y2 := 2
 x1 := y2

显然,我们不需要做数据流分析就可以知道第三行中使用的 y 来自于第二行的定义,这个例子很好地说明了 SSA 的优势。除此之外,还有许多其他的优化算法在采用 SSA 形式之后优化效果得到了极大提高。甚至,有部分优化算法只能在 SSA 上做。

3 如何生成 SSA ?

把程序转换为 SSA 形式,最简单的方法就是将每个被赋值的变量用一个新的变量(版本)来取代,同时将每次使用的变量替换为这个变量到达该程序点的“版本”。以下面左边的流图为例,右边的流图则是按照这个方法生成的 SSA:


这里写图片描述      这里写图片描述

图一 原程序流图          图二 SSA 形式的程序

眼尖的人可以发现,右边的图其实也不是最后的 SSA 形式,它最下面的基本块里 y 的使用尚未确定。由于该基本块的多个前驱基本块里都对 y 进行了定义,这里我们并不知道程序最终会从哪个前驱基本块到达该基本块。那么,我们如何知道 y 该取哪个版本?这时候 Φ(Phi) 函数便出场了。

我们在最后一个基本块的起始处添加了一条新的语句(Φ),它给出了 y 的一个新的定义 y3,根据程序的运行路径选择对应的版本。最后得出的 SSA 如下图所示:


这里写图片描述

图三 最终的 SSA

要注意的是,Φ 函数并不是一条实际的指令,现在的 target 指令集大多都不支持这样的指令,因此需要编译器做特殊处理。编译器后端在碰到 Φ 函数时,会进行相关处理得到正确的汇编代码,这个过程叫做 resolution。知乎有一个帖子专门介绍了 Phi 的处理方式,可以戳这里:Phi Node 是如何实现它的功能的?

4 如何插入 Φ 函数 ?

根据上面的了解,我们可以知道实现 SSA 的一个关键点是 Φ 函数。自然而然的,我们需要回答下述问题:给出任意一个控制流图,在哪里插入 Φ 函数?哪些变量需要 Φ 函数来进行选择?这些问题很难,但是迄今已经有了一个高效的解决方案。该方法的计算涉及到我们下面要介绍的一个概念:支配边界。

4.1 求解支配边界

在介绍支配边界之前,简单回顾一下支配点(dominator)的概念,这个概念在另一篇博客上有介绍(控制流分析之循环)。在控制流图中,我们称结点 A 严格支配(strictly dominate)结点 B 当且仅当结点 A 与 B 并非同一结点,并且到达结点 B 的所有路径都包含结点 A。简单说,在到达结点 B 的时候,结点 A 中的代码都跑了一遍。要注意的是,概念严格支配和概念支配的区别在于俩结点是否同一节点。如果结点 A 与结点 B 可以是同一结点,那么称结点 A 支配(dominate)结点 B。换句话说,一个结点一定支配它本身。

现在可以提出支配边界(dominance frontiers)的概念了:如果结点 A 并不严格支配结点 B,而是支配结点 B 的立即前驱,那么结点 B 就在结点 A 的支配边界中。要特别注意以下情况,即当结点 A 不严格支配结点 B 且结点 A 就是结点 B 的立即前驱时,由于所有结点都支配它本身,于是结点 A 也支配它本身,这种情况下结点 B 也在结点 A 的支配边界里。从结点 A 的角度来看,可以把支配边界理解为结点 A 的支配关系终止的地方,也就是会有其他控制流出现的地方。

显然,通过支配边界可以准确获取到 Φ 函数应当出现的地方。如果结点 A 定义了某个变量,那么这个变量会到达被结点 A 支配的每一个结点。我们只有抛开这些结点,考虑支配边界,才会发现有其他的控制流可能对同样的变量进行了定义。下面介绍一个计算支配边界的主流算法,它是由 Cooper 等人在论文《A Simple, Fast Dominance Algorithm》中提出:

1 for each node b
2   if the number of immediate predecessors of b ≥ 2
3     for each p in immediate predecessors of b
4       runner := p
5       while runner ≠ idom(b)
6         add b to runner’s dominance frontier set
7         runner := idom(runner)

注意 1:上述算法中出现的 idom(b) 即立即支配(immediate dominate)结点 b 的结点。顾名思义,结点 b 的立即支配结点是指在支配树(dominator tree)中结点 b 的父亲,也就是离结点 b 最近的支配结点。对于非 entry 结点来说,这样的结点有且只有一个。

注意 2:对于只有一个立即前驱的结点来说,这个前驱也一定是它的立即支配结点。因此,上述算法第五行的循环条件恒不成立,没有必要考虑这种情况。

4.2 Φ 函数插入算法

在求出了支配边界后,后面的工作就简单很多了。接着,我们需要利用上一节求出的支配边界,求解需要使用 Φ 函数的基本块。下面给出一个插入算法的例子,该算法在所有支配边界的结点中插入了 Φ 函数:

// has-phi(
  • 45
    点赞
  • 84
    收藏
    觉得还不错? 一键收藏
  • 2
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论 2
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值