📋📋📋本文目录如下:⛳️⛳️⛳️
目录
1 概述
近年来,随着能源短缺和环境问题的日益凸显,太阳能、风能等各种形式的清洁能源得到广泛应用,微网作为分布式电源接入电网的有效途径得到快速发展"。大量的新能源以及储能装置接入给微网带来能量调度复杂以及经济性低等问题。本文参考了模糊算法预测电价。
基于模糊神经网络(Fuzzy Neural Network, FNN)算法预测电价是一种将模糊逻辑与神经网络相结合的方法,旨在提高预测模型的准确性和鲁棒性。在电力市场中,电价受多种因素影响,包括供需关系、天气状况、经济活动、政策调整等,这些因素之间存在复杂的非线性关系和不确定性,使得电价预测成为一个典型的复杂问题。模糊神经网络通过融合模糊系统的处理不确定信息的能力和神经网络的强大学习能力,为解决此类问题提供了一个有效途径。
研究背景
随着电力市场的开放和竞争加剧,准确预测电价对于发电企业制定生产计划、电力交易策略以及辅助政府和监管机构进行市场调控都至关重要。传统的时间序列分析、回归分析等方法在处理具有高度非线性和不确定性的电价预测问题时可能显得力不从心,而模糊神经网络以其特有的优势受到关注。
研究方法
-
数据预处理:收集历史电价数据及影响电价的相关因素数据,进行数据清洗、标准化或归一化处理,为模型输入做准备。
-
构建模糊神经网络模型:FNN模型通常由输入层、模糊层、规则层、输出层组成。输入层接收预处理后的数据;模糊层利用模糊集合理论对输入进行模糊化处理,以处理输入数据的不确定性;规则层根据模糊逻辑建立输入与输出之间的关系;输出层则通过反模糊化过程得到最终预测结果。
-
训练与优化:采用反向传播或遗传算法等方法对模型参数进行训练,不断调整网络权重和阈值,以最小化预测误差。过程中可能需要多次迭代以找到最优解。
-
模型验证与测试:将数据分为训练集、验证集和测试集,通过交叉验证等技术评估模型的泛化能力和预测精度。
应用优势
- 处理不确定性:模糊逻辑能有效处理影响电价的不确定性因素,如天气的不可预测性。
- 非线性建模:神经网络能够学习和表达复杂的非线性关系,提高预测的准确性。
- 自适应学习:模糊神经网络具有良好的自适应性和学习能力,可以随时间调整预测模型以适应市场变化。
- 综合多因素影响:能够同时考虑多个影响因素,提供更全面的预测视角。
结论
基于模糊神经网络的电价预测研究是一个跨学科领域,结合了电气工程、经济学、计算机科学等知识。通过不断优化模型结构和算法,提高预测精度和效率,可以为电力市场的参与者提供有力的支持,帮助他们做出更加科学合理的决策。然而,实际应用中还需考虑模型的实时性、可解释性以及对新出现因素的快速响应能力。
2 模糊神经网络简介
模糊神经网络包括输入层、模糊化层、模糊推理层、归一化层、输出层等多个层级,其基本结构如图4所示:
可以将输入层的输入样本集合标记为X,利用模糊化层表示各输入结点的从属程度,并将各神经网络表示为一种具有一定程度的模糊化准则,选择隶属函数为径向对称的高斯函数,第j个神经元输出函数定义为:
其中cij和σij分别表示的是第j个高斯隶属函数的中心和宽度。经过模糊推理层的处理得出的输出结果为:
部分代码:
clc
%% 读取数据
training = csvread('训练数据.csv', 1,1);
testing=csvread('测试数据.csv', 1,1);
%% 剔除异常值:
P = training(:,3);
P1=testing(:,3);
figure('name','使用异常值训练数据');
plot(P,'b*');
Ph=P;
title('使用异常值训练数据')
figure('name','使用异常值测试数据');
plot(P1,'b*');
title('使用异常值测试数据')
Q1=prctile(P,25);
Q3=prctile(P,75);
range=[Q1-1.5*(Q3-Q1),Q3+1.5*(Q3-Q1)];
position=[find(P>range(2)) find(P<range(1))];
%% 剔除异常值
P(position)=[];
figure
plot(P,'r*');
title('没有异常值的训练数据')
figure
subplot(1,2,1)
hist(Ph)
title('没有异常值的训练数据')
subplot(1,2,2)
hist(P)
title('没有异常值的训练数据')
%% 模糊神经网络
training = removerows(training, position);
T= training(:,1);
D= training(:,2);
P= training(:,3);
t=3:(length(training)-1);
training=[T(t-2), T(t-1),T(t),D(t-2), D(t-1), D(t), P(t+1)];
trainC = corrcoef(training); % 相关矩阵
%% 定义模糊输入和输出
trainingInputs(:,1) = training(:,6);
trainingInputs(:,2) = training(:,2);
trainingOutputs = training(:,7);
figure
hist(trainingInputs(:,1))
title('电力需求直方图')
figure
hist(trainingInputs(:,2))
title('温度直方图')
figure
hist(trainingOutputs)
title('电价直方图')
3 运行结果
4 参考文献
部分理论引用网络文献,若有侵权请联系博主删除。
[1]齐霁,李威,宁亮,王鸥,李曦.基于模糊神经网络的电网调度自动化控制系统[J].制造业自动化,2022,44(01):118-122.
[2]张玉涵. 基于TS模型的可控励磁直线电动机模糊控制研究[D].沈阳工业大学,2022.DOI:10.27322/d.cnki.gsgyu.2022.000323.