- 博客(37)
- 资源 (4)
- 收藏
- 关注
原创 驱动开发(2)|鲁班猫rk3568简单GPIO波形操控
本文主要分享了GPIO控制的四种方式,shell两种控制方式,和使用代码控制的两种方式,重点要说的是如果你追求极致性能和对硬件有较高的控制要求,可能更合适。反之,若追求易用性和代码的可维护性,gpio_set_value 更为推荐。
2025-05-29 19:43:26
1187
原创 Paddle Serving|部署一个自己的OCR识别服务器
本文主要简要记录了PaddleServing项目的部署过程,旨在帮助读者快速了解如何搭建和配置PaddleServing服务。PaddleServing是一个基于PaddlePaddle的高效推理服务框架,能够帮助用户便捷地将训练好的模型部署为可供实时预测的服务。本文将详细介绍部署过程的步骤,包括环境配置、服务启动、模型加载以及API调用等方面的内容。
2025-05-02 17:30:09
1531
原创 windows系统搭建自己的ftp服务器,保姆级教程(用户验证+无验证)
本文主要记录了在windows上如何创建ftp服务器,至于为什么没有防火墙配置,是因为我没有遇到这个问题,可能是因为我用的主机来访问虚拟机,如果之后遇到防火墙问题,后续会再补充上去。
2025-05-01 18:20:39
1864
2
原创 驱动开发(1)|鲁班猫rk356x内核编译,及helloworld驱动程序编译
本文主要记录了如何下载内核源码、编译源码的详细步骤,并介绍了如何实现并编译一个简单的 HelloWorld 驱动程序。通过这篇文章,您将能够了解从获取内核源码、配置编译环境,到成功编译并加载内核模块的全过程。特别地,我们将通过一个简单的 HelloWorld 驱动程序实例,展示如何编写、编译和测试一个基本的 Linux 内核模块,从而帮助您更好地掌握内核驱动开发的基本流程。
2025-04-26 11:51:55
795
原创 frp内网穿透|小白版frp简单内网穿透,无需域名
本文简要介绍了如何使用 FRP 实现内网穿透。由于篇幅限制,无法详细展开所有配置和应用场景,但核心步骤和关键点已涵盖,旨在为读者提供一个清晰的入门指导。如果后续有时间的话,会考虑将nginx和域名加上,做个进阶教程。
2025-04-10 11:19:21
683
原创 部署|Llama-Facory微调模型部署
本文介绍了如何将llama-factory微调后的大模型通过ollama部署,方便自己查看不用每个网页看一点,到处找各种命令。
2025-03-19 09:44:10
463
原创 模型部署| PP-OCRv3在Centos7.9上部署,fastdeploy编译
编译这个项目一波三折,编译项目跟着官网上的步骤基本上不会出错,但是gcc/g++的安装却是一波三折,编译完成打算搞成个ocr识别服务器。
2025-03-12 13:51:32
700
原创 环境安装(Centos7.9)| gcc8.2安装 + cmake3.30.8安装(解决version `GLIBCXX_3.4.xx‘ not found)
如下图所示,1为gcc8.2的依赖库,2为gcc8.2下载依赖库的下载源。安装之前要先安装低版本的gcc/g++,不然编译会报错没有c的编译器。很多教程到上一步就完成了,导致编译项目的时候会出现。相较于gcc/g++安装,cmake安装简单很多。等问题,原因是没有软链接新的gcc编译器。然后根据下列步骤操作。
2025-03-12 13:39:12
412
原创 Error| virtual studio 报错:没有匹配 if 的非法 else\“xxx function”: 本地函数定义是非法的
报错时文件的格式是:通过高级保存选项修改成:报错消失。
2025-03-07 15:39:13
179
原创 实例分割 | yolov11训练自己的数据集
因为项目还没完成,主要精力在此项目中,过程写的有点仓促,后面会慢慢优化文章质量,补全没完成的部分。
2025-03-01 17:13:45
1271
原创 LLaMA-Factory|微调大语言模型初探索(4),64G显存微调13b模型
PyTorch的全切片数据并行技术FSDP能让我们处理更多更大的模型,这是微调13b模型成功的关键。fsdp_config.yaml中的FULL_SHARD将模型参数、梯度和优化器状态都切分到不同的GPU上,类似ZeRO-3。使用微调方法微调32B模型依旧OOM,后续会继续探索DeepSpeed和DDP方式来微调32B模型,验证其可行性。
2025-02-22 15:46:30
1459
原创 我的创作纪念日
于是,我开始有了记录项目的想法,计划将每个项目中遇到的困难、解决的思路以及反思的过程都详细记录下来。此外,随着工作内容的深入,我逐渐意识到,记录不仅仅是为了解决眼前的问题,它更是一个长期积累的过程,有助于自我提升与成长。同时,这种探索和学习的习惯也促使我不断提升自己的技术能力,在面对未来的挑战时,能够更加游刃有余,并推动自己的成长和进步。这不仅帮助我拓宽了技术视野,还为我的工作提供了新的灵感和参考。
2025-02-20 15:55:47
312
原创 LLaMA-Factory|微调大语言模型初探索(3),qlora微调deepseek记录
使用lora微调方法微调1b模型显存占用率甚至大于使用qlora微调3b模型。训练方法相同的情况下,不同显卡之间的显存使用量通常不完全相同,上述现存使用情况只能作为参考。
2025-02-20 15:10:11
1429
原创 开发板部署|RK3588部署DeepSeek-1.5B
本文介绍了两种在RK3588上部署deepseek-1.5b的方法,虽然两种方法的token是差不多的,但是我还是推荐使用npu的方法去推理大模型,后续会继续测试deepseek中更大参数体量的模型,测试一下rk3588的极限在哪里。
2025-02-18 16:01:36
1405
6
原创 LLaMA-Factory|微调大语言模型初探索(2),训练自己的聊天机器人
了解数据集的种类及其标注格式对于模型的微调至关重要。不同的数据集有不同的训练目标和标注方式,这些差异决定了模型学习的重点和微调策略的选择。通过深入理解数据集的结构和目标,能够帮助我们更精准地制定微调计划,优化模型的表现,并提升其在实际应用中的效果。
2025-02-16 16:45:44
1311
原创 总结|yolov5从训练到部署(2),yolov5部署看这一篇文章就够了
模型转换并不难,难的是模型转换环境的安装,具体环境安装还是得参考官网,但也不能全信,参考网上教程再结合网上教程最佳。
2025-02-14 11:19:06
643
原创 LLaMA-Factory|微调大语言模型初探索(1)
整体来说,LLaMA-Factory这个项目的坑不少,需要仔细一点,我现在也刚刚跑通,后续考虑制作自己的数据集,然后微调一个chatbox试试。
2025-02-13 16:16:55
992
原创 总结|yolov5从训练到部署(1)
采用归一化的小数值来表示物体的位置信息,是为了保证模型具有缩放不变性,能够适应不同尺寸的图像,并且有助于提高训练效率和模型的泛化能力。这里class的来源是你的标注程序data目录下的predefined_classes.txt,具体使用时可以改成你自己的标签。如图所示,1是选择图片位置,2是选择标签保存位置,3是标签保存格式,这里我调成yolo(txt)格式,4是开始标注。,具体为什么是中心点坐标而不是左上角坐标,这就跟yolo的检测机制有关系了,感兴趣的可以自己查一下。
2025-02-11 14:46:56
289
原创 Windows| DeepSeek最简单的本地部署方法
Ollama是一个集成了很多大语言模型的软件,专为在本地机器上便捷部署和运行大型语言模型(LLM)而设计。不仅有DeepSeek还有其他很多大语言模型都能在里面使用,如图所示:如果嫌cmd界面太过简陋也可以与Open WebUI或者AnythingLLM结合使用,两者都提供了不错的ui界面和api调用接口。
2025-02-05 11:27:52
2543
原创 模型部署|yolov5在rk3588上部署
1.pt文件转onnx看https://github.com/airockchip/yolov5的README_rkopt.md链接2.onnx转rknn及代码部署看https://github.com/airockchip/rknn_model_zoo/tree/main/examples/yolov5链接。
2025-01-21 15:39:58
1619
2
原创 目标跟踪探索(2)|浅谈一下常用的目标跟踪算法
SORT 是基于卡尔曼滤波和匈牙利算法的目标跟踪方法,利用卡尔曼滤波进行目标状态预测,使用匈牙利算法解决目标的关联问题。计算开销较小:由于不涉及复杂的深度学习模型,算法效率高,实时性强。简单实现:基于经典的滤波和关联技术,易于实现,且对计算资源要求较低。在复杂场景下表现较差:对目标遮挡和外观变化的适应能力有限,可能导致目标丢失。精度较低:与基于深度学习的方法相比,在精度上有所欠缺。非常高,广泛应用于实时目标跟踪,尤其在性能要求较高且硬件资源有限的场景中。实时性较强,适用于快速跟踪任务。
2025-01-18 14:13:01
1338
原创 解决Linux下OpenCV的VideoCapture类无法打开mp4问题
1.对版本没有指定要求的兄弟们可以直接用命令安装opencv(好像没有出现报错的问题):安装ffmpeg安装GTK2cmake安装opencvmake -j4。
2025-01-17 11:11:53
579
原创 目标跟踪探索(1)| 实时多目标跟踪系统PP-Tracking部署
百度出品的产品向来值得尝试,毕竟是大厂出品,技术实力有保障。可惜的是,这款PPTracking目前仅进行了对英伟达加速的适配,未能覆盖微芯瑞和昇腾等其他平台的加速适配,导致其在多样化硬件环境中的兼容性受到一定限制。希望未来能够进一步扩展支持的硬件平台,以提升其整体性能和适用范围。
2025-01-16 14:15:33
804
原创 多卡训练|PyTorch最简单的多卡训练方式
因为是多卡训练,DataParallel操作会对模型进行封装且改变键名,DataParallel在模型的键前添加了module前缀,我们只需要删除DataParallel容器即可。使用DataParallel的话会导致模型正常加载时会出现。
2025-01-15 14:47:54
604
原创 图像修复(3)| 基于mask操作和图像修复的一键去水印
目标分割(Object Segmentation)是计算机视觉中的一项重要任务,旨在识别图像中的目标并对其进行像素级的分割。它主要包括两种类型:语义分割(Semantic Segmentation)和实例分割(Instance Segmentation)。在语义分割中,目标被划分为不同的类别,而实例分割不仅要识别目标的类别,还要分辨同一类别中不同实例的像素。我最初打算结合检测模型和修复神经网络来去除水印,然而发现这种方法的效果并不理想。对于有兴趣的研究者,完全可以尝试进一步探索这个方向。
2025-01-15 13:45:31
1357
原创 深度学习|浅谈一下监督学习中的两大核心任务:分类和回归
分类任务和回归任务是机器学习中两种常见的任务类型,尽管它们的目标不同,但在某些任务中,它们可以结合使用,尤其是在目标检测、姿态估计等任务中。结合实例:YOLO系列(如YOLOv5):在YOLO模型中,分类和回归是并行的。它通过CNN提取图像特征,最后通过两组输出分别进行分类(预测目标的类别)和回归(预测目标的边界框坐标)。
2025-01-14 15:04:12
976
原创 目标跟踪| 可插拔的最先进的多对象跟踪器(目标检测+目标跟踪+ReID)
老规矩,先上效果图:检测模型为yolov8s、跟踪算法为deepocsort、ReID模型为OSNet。
2025-01-13 13:58:43
323
原创 轮廓标注|基于Qt和Opencv的轮廓标注
前言之前接触的标注软件五花八门,有labelimg、labelme、PPOCRLabel等,没有一款是能将所有功能集成起来的,所以就有了自己写一个标注软件的想法,今天就分享一下轮廓标注的代码,用于实例分割、语义分割等像素级别的处理老规矩,先看效果:通过对刘亦菲的轮廓标注可以提取她的mask图,方便对图片进行抠图等一系列操作,保存其坐标可以为后续标注数据集做准备。代码:#pragma once#include <QWidget>#include "ui_test.h"#inc
2025-01-10 11:38:01
351
原创 图像修复(2)| 基于mask操作和图像修复的去水印、图像补全、去除瑕疵与污点
随着对修复神经网络认识的逐渐加深,我意识到图像修复神经网络不止有去除水印一种功能,还有许多其他功能,去除瑕疵,移除场景物品、人物等,后续可能会出一些其他用法的文章。
2025-01-09 14:59:35
385
原创 图像修复(1)| 基于mask和图像修复神经网络的去水印操作
模板扣除水印+修复神经网络的方法优点是准确定位水印的位置,保证了水印去除的准确性,缺点也很明显,无法一个项目处理完两个任务,需要结合水印提取模型一起实现水印去除任务,后续考虑研究前言的其他两种方式来实现水印去除任务。
2025-01-04 11:24:27
699
原创 图像分割 | 基于U2net的抠图项目,手把手教学
兴趣是学习的动力,它激发我们去探索未知的领域,激励我们追求更深层次的知识。当我们对某个主题或技能产生浓厚的兴趣时,学习便不再是一种负担,而是一种享受。鲁迅曾经说过:当你对一个项目产生兴趣之后,就会像对刚追到手的妹子一样,爱不释手!!!所以本文旨在让你对项目激发兴趣,纯动手项目,少理论,多实践,废话少,干货多。本篇文章简单介绍了一下U2net模型的用法,基于预训练模型来做图片处理,要想训练高精准度模型还需要自己找数据集,训练自己的数据集。QQ交流群:224506901。
2024-09-30 15:43:54
1458
原创 Undefined reference to cv::imread(std::string const&, int)
如图所示,能找到opencv环境,但是opencv的API报错。
2024-02-23 13:31:42
707
原创 Jetson TX2下编译AArch64版本的libtorch
error adding symbols: file in wrong format(添加符号时出错:文件格式错误)
2024-02-21 17:05:22
1557
linux自学笔记,有需要的自己下,关注即可
2020-12-07
空空如也
TA创建的收藏夹 TA关注的收藏夹
TA关注的人