前言
监督学习是机器学习中最基础且应用最广泛的学习范式之一。在监督学习中,模型通过大量带标签的训练数据来学习输入与输出之间的映射关系,目标是通过这种学习过程使得模型能够在未见过的测试数据上进行准确预测。监督学习的核心任务主要包括分类和回归,这两大任务在实际应用中占据了重要地位。
分类任务的目标是将输入数据分配到预定义的类别中,常见于语音识别、图像分类和文本分类等场景。而回归任务则是预测一个连续值,广泛应用于房价预测、股市分析等领域。尽管这两者在目标上有所不同,但它们都依赖于相似的学习过程,通过训练数据来调整模型的参数,从而在实际问题中提供有价值的预测结果。在本篇中,我们将简要探讨这两大核心任务的基本概念、应用领域及其重要性。
分类任务
分类任务的目标是将输入数据分配到一个离散的类别标签中。分类任务可以分为:
1.二分类 (Binary Classification)
任务只有两个可能的输出类别,以下是一些常见的基于二分类任务的应用:
1.二分类图像分类:将图像分为两个类别。例如,判断一张图像是猫还是狗,或者识别某个图像是否包含某个特定物体(如人脸、癌症病变等)。
2.目标分割:在语义分割(Semantic Segmentation)中,二值分割是一个常见的任务,网络的目标是将前景物体(如人、车等)从背景中提取出来。
2.文本情感分析:将文本分类为两种情感类别,例如:积极(positive)或消极(negative)。这是情感分析中的经典二分类任务。
3.电子邮件垃圾分类:将电子邮件分类为垃圾邮件(spam)或正常邮件(ham),这是一个典型的二分类问题。
4.医学图像中的疾病检测:通过分析医学影像(如X光片、CT扫描等)来判断是否患有某种疾病,例如,是否患有肺结核、乳腺癌等。这是一个二分类任务,其中一个类别是“健康”,另一个类别是“疾病”。
5.新闻分类:将新闻文章分为两种类别,比如“政治新闻”与“非政治新闻”。
6.舆情分析:判断一个文本或帖子是属于“积极”的还是“消极”的舆论方向。
2.多分类 (Multi-class Classification)
任务有多个输出类别,以下是一些常见的基于多分类任务的应用:
- 图像分类
物体识别:例如,识别一张图片中的物体属于“猫”、“狗”、“鸟”等多个类别中的一个。
场景分类:对图像进行分类,如识别图像属于“城市”、“海滩”、“森林”等类别。 - 文本分类
新闻分类:将新闻文章分为多个类别,如“体育”、“政治”、“科技”、“娱乐”等。
情感分析(多类别):某些情感分析任务不仅仅判断文本是否为积极或消极情感,还可能进一步分为多个情感类别,如“愉快”、“愤怒”、“悲伤”等。
垃圾邮件分类:根据邮件内容将其分类为“广告邮件”、“订阅邮件”、“垃圾邮件”或“正常邮件”。 - 语音识别与情感分析
语音情感分类:将语音片段分为多个情感类别,如“愉快”、“愤怒”、“恐惧”、“悲伤”等。
语音命令识别:将语音命令分类为多个命令类别,例如“播放音乐”、“关灯”、“打开空调”等。 - 医学诊断
疾病分类:对医学图像或患者数据进行分类,判断某种疾病属于多个疾病类型中的一种。例如,通过X光或CT图像将病变分类为“肺炎”、“结核”、“肺癌”等不同类型的疾病。
病理分类:通过对组织切片图像进行分析,判断肿瘤的类型,如“良性肿瘤”和“恶性肿瘤”中的多个分类。 - 客户分类
客户群体分析:将客户分为不同类别,例如根据年龄、消费习惯、购买频率等将客户分类为“青少年”、“中年”、“老年”等类别。
产品推荐系统:根据用户的购买历史和行为数据,将用户分类到不同的推荐类别,例如“电子产品爱好者”、“服装购物者”、“家庭用品购买者”等。 - 语音识别(ASR)
语音指令分类:识别用户的语音指令,并将其分类为不同的动作或任务,例如“开启空调”、“播放音乐”、“发送短信”等。 - 手写数字识别
MNIST手写数字识别:将手写数字图像分类为0到9的数字之一。这个任务典型地是一个多分类问题,每个数字属于0-9中的一个类别。 - 情感识别
文本情感分类:除了二分类情感分析任务(如“积极”与“消极”),还可以将情感分为多个类别,如“开心”、“愤怒”、“恐惧”、“惊讶”等。
3.多标签分类 (Multi-label Classification)
每个输入样本可以被分配多个标签,以下是一些常见的基于多分类任务的应用:
- 文本分类
情感分析:在某些情感分析任务中,一段文本可能同时具有多个情感,例如,评论中既包含“愉快”情感,也可能包含“惊讶”或“愤怒”情感。
新闻分类:一篇新闻可能同时涉及多个主题或标签,例如,“科技”、“创新”和“商业”。
文档主题标注:对于长篇文档,可能同时涉及多个主题,例如,“政治”、“经济”、“社会问题”等。 - 推荐系统
电影推荐:用户可能对多种电影类型感兴趣,例如,某个用户可能既喜欢“动作片”也喜欢“科幻片”和“冒险片”,因此这些标签都应该与该用户相关联。
商品推荐:基于用户的购买历史或兴趣,推荐系统可能为用户打上多个标签,如“家居用品”、“电子产品”、“运动装备”等。 - 图像分类
物体检测:一张图像可能包含多个物体,每个物体属于不同的类别。例如,一张图片可能同时包含“猫”、“狗”和“鸟”。
场景分类:一张图片可能同时属于多个场景类别,如“海滩”和“日落”。
医学图像标注:在医学图像中,一个图像可能包含多个病变区域,每个区域的标签可能不同,如“肿瘤”、“出血”或“炎症”。 - 语音情感分析
语音情感分类:某段语音可能同时包含多种情感,如既有“愉快”情感,也有“惊讶”或“愤怒”的成分。
多目标语音识别:语音中的多个指令可能同时被执行,例如,“打开灯”和“播放音乐”两个命令。 - 医学诊断
疾病预测:一个患者可能患有多种疾病。例如,一名患者可能同时患有“高血压”和“糖尿病”,这些疾病标签会同时出现在同一个诊断结果中。
多标记病理图像分析:医学图像中的每一部分可能有多个标签,例如一个CT图像可能同时出现“肺炎”与“结核”相关标签。 - 视频分析
视频标签分类:一段视频可以包含多个场景或动作标签,例如一个视频中既可能有“篮球”标签,也可能有“庆祝”或“运动”标签。
视频内容分析:视频中可能同时涉及多个主题,比如“教育”、“技术”和“娱乐”等。 - 社交媒体分析
社交媒体情感分析:一条社交媒体内容可能同时表达多个情感,例如,一条推文可能在同一时间表达“愤怒”和“喜悦”。
标签分类:例如,一篇微博或Instagram帖子可能同时标注多个主题标签,如“旅游”、“美食”、“摄影”。
回归任务
1.全连接神经网络(Feedforward Neural Networks, FNN):
这是最常见的回归模型,适用于结构化数据。网络通过若干个全连接层(dense layers)进行特征的逐层处理和转换,最后通过线性激活函数输出回归结果。常用于简单的回归任务。
2.卷积神经网络(Convolutional Neural Networks, CNN):
虽然CNN通常用于图像分类任务,但它们也可以用于回归任务,尤其是处理图像数据时。在图像回归任务中,CNN通过卷积层提取图像特征,最后通过全连接层输出连续的回归值。例如,预测图像中的房价、预测图像中的物体尺寸等。
3.循环神经网络(Recurrent Neural Networks, RNN):
RNN特别适合于处理时间序列数据和序列数据。在回归任务中,RNN可以用来预测时间序列的未来值(如股票价格、气象数据等)。经典的RNN、长短时记忆网络(LSTM)和门控循环单元(GRU)都是常用的变体。
4.长短时记忆网络(LSTM):
LSTM是一种特殊的RNN结构,能够有效捕捉长时间依赖关系,因此在处理长期依赖的回归任务中表现出色。例如,基于历史数据预测未来时间序列值(如交通流量预测、销售预测等)。
5.门控循环单元(GRU):
GRU是RNN的另一种变体,类似于LSTM,但其结构更加简洁,计算速度更快,适用于需要处理长序列且对性能有较高要求的回归任务。
6.自编码器(Autoencoders):
自编码器通常用于无监督学习,但也可以应用于回归任务,尤其是数据降维和特征提取后进行回归分析。自编码器通过编码器部分提取输入数据的低维表示,之后通过解码器部分恢复数据,并通过网络的输出进行回归任务。
7.生成对抗网络(GANs)用于回归:
虽然GANs通常用于生成任务,但它们也可以应用于回归任务。例如,在生成模型中,可以通过调整生成器的输出进行回归任务,通过判别器来确保回归结果的真实性。
8.变分自编码器(VAE):
VAE是一种生成模型,能够学习数据的潜在分布。它可以用作回归任务中的生成模型,特别是当你需要从潜在空间生成数据并进行回归预测时。
9.图神经网络(Graph Neural Networks, GNNs):
在一些复杂的回归任务中,如社交网络分析、交通流量预测等,图神经网络(GNNs)可以用来建模图结构数据,通过图结构学习节点之间的关系,并进行回归预测。
10.Transformer模型:
Transformer模型因其强大的序列建模能力,在自然语言处理领域广泛应用,也可以用于回归任务,尤其是处理具有长时间依赖的序列数据(如文本或时间序列数据)时,能够有效建模并进行回归预测。
总结
分类任务和回归任务是机器学习中两种常见的任务类型,尽管它们的目标不同,但在某些任务中,它们可以结合使用,尤其是在目标检测、姿态估计等任务中。
结合实例:
YOLO系列(如YOLOv5):在YOLO模型中,分类和回归是并行的。它通过CNN提取图像特征,最后通过两组输出分别进行分类(预测目标的类别)和回归(预测目标的边界框坐标)。
Faster R-CNN:Faster R-CNN通过RPN(Region Proposal Network)生成候选区域,然后将这些区域送入分类和回归网络,分别进行分类(确定目标类别)和回归(确定边界框的坐标)。
SSD(Single Shot Multibox Detector):SSD也采用了分类与回归的结合,它在不同的尺度上生成多个候选框,并对每个候选框进行分类和回归任务。