SWUST OJ 1070: 邻接矩阵存储简单路径

题目描述

假设无向图G采用邻接矩阵存储,设计一个算法,输出图G中从顶点u到v的所有简单路径。

输入

简单路径是指路径上的顶点不重复。第一行为一个整数n,表示顶点的个数(顶点编号为0到n-1),第二行表示顶点u和v的编号,接下来是为一个n*n大小的矩阵,表示图的邻接关系。数字为0表示不邻接,1表示不邻接。

输出

输出图G中从顶点u到v的所有简单路径。

样例输入

5
0 3
0 1 0 1 1
1 0 1 1 0
0 1 0 1 1
1 1 1 0 1
1 0 1 1 0

样例输出

0123
01243
013
03
04213
0423
043

参考程序

#include<stdio.h>
int map[100][100];
int a,b;
int n;
void CreateMap()
{
	for(int i=0;i<n;i++) for(int j=0;j<n;j++) scanf("%d",&map[i][j]);
}
void FindAllPath(int path[],int k,int i,int flag[])
{   
	if(flag[i]==0)//如果该点未标记,则将其标记,并且储存在路径中 
	{
		flag[i]=1;
		path[k++]=i;
		if(i==b)//如果该点为结束点,则输出路径 
		{
			for(int j=0;j<k;j++)
			{
				printf("%d",path[j]);
			}
			printf("\n");
		}
		for(int j=0;j<n;j++)//遍历该点对应的行 
		{
			if(map[i][j]!=0)
			{
				FindAllPath(path,k,j,flag);
				for(int t=k;t<n;t++)//还原标记,因为上一次的遍历中走过了一些点,将这些点的标记变成了1,继续向该行的下一个点递归,就得将该行上个点递归改变的标记还原 
				{
					if(path[t]!=-1)
					{
						flag[path[t]]=0;
						path[t]=-1;
					}
				}
			}
		}
	}
}
int main()
{
	scanf("%d",&n);
	scanf("%d %d",&a,&b);
	CreateMap();
	int path[100],k=0,flag[100]={0};//path储存路径,flag初始化标记 ,k记录路径长度 
	for(int i=0;i<n;i++) path[i]=-1;//初始化路径 
	path[k++]=a;//将 开始点储存在路径的第一个位置 
	flag[a]=1;//将开始点标记 
	for(int i=0;i<n;i++)//遍历开始点对应的行 
	{
		if(map[a][i]!=0)
		{
			FindAllPath(path,k,i,flag);
			for(int t=k;t<n;t++)//还原标记,因为上一次的遍历中走过了一些点,将这些点的标记变成了1,继续向该行的下一个点递归,就得将该行上个点递归改变的标记还原 
				{
					if(path[t]!=-1)
					{
						flag[path[t]]=0;
						path[t]=-1;
					}
				}
		}
		
	}
}

注意

该程序仅供学习参考!

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

无奈清风吹过

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值