自定义博客皮肤VIP专享

*博客头图:

格式为PNG、JPG,宽度*高度大于1920*100像素,不超过2MB,主视觉建议放在右侧,请参照线上博客头图

请上传大于1920*100像素的图片!

博客底图:

图片格式为PNG、JPG,不超过1MB,可上下左右平铺至整个背景

栏目图:

图片格式为PNG、JPG,图片宽度*高度为300*38像素,不超过0.5MB

主标题颜色:

RGB颜色,例如:#AFAFAF

Hover:

RGB颜色,例如:#AFAFAF

副标题颜色:

RGB颜色,例如:#AFAFAF

自定义博客皮肤

-+
  • 博客(239)
  • 收藏
  • 关注

原创 大模型的参数高效微调;大模型的对齐

KALoRA框架技术摘要 KALoRA提出了一种创新的统一框架,将参数高效微调(LoRA)、知识注入和模型对齐融合为端到端训练流程。其核心创新包括: 动态知识门控:自适应调节外部知识注入强度; 对齐感知低秩分解:将对齐目标嵌入LoRA参数更新过程; 多层级知识蒸馏:在Token/句子/文档层面渐进学习; 宪法AI约束:集成自动违规检测与自我修正机制。 技术实现覆盖三阶段训练流程(知识预热→联合微调→对齐优化),支持动态梯度平衡和多目标优化。验证实验设计涵盖通用能力(GLUE)、领域任务(MedQA)及安全性

2025-05-27 14:40:42 21

原创 仿真环境中机器人抓取与操作——感知与抓取

在Gazebo中模拟Realsense D435i相机。使用OpenCV处理图像并检测物体。将像素坐标转换为3D点并变换到基坐标系。使用MoveIt!规划简单的抓取姿态。通过以上步骤和代码,开发者可以快速实现仿真环境中的机器人抓取与操作。

2025-05-27 14:19:21 9

原创 仿真环境中机器人抓取与操作上手指南

针对“仿真环境中机器人抓取与操作”项目的上手指南,旨在帮助具备基本机器人学知识的开发者快速实现一个简单的“拿起并放置”(Pick and Place)任务。使用以下 Python 脚本运行一个简单的 Pick and Place 任务,脚本基于 ez_pick_and_place 包,整合了感知、抓取和运动规划。ez_pick_and_place 是一个 ROS 包,简化了使用 MoveIt!以下是完整的 Pick and Place 任务实现,基于 ez_pick_and_place 包。

2025-05-27 14:14:42 7

原创 仿真环境中机器人抓取与操作 - 上手指南

本指南将带您完成一个完整的机器人抓取与操作项目,从环境搭建到运动控制的实现。我们将使用业界标准的ROS + Gazebo + MoveIt!组合,确保您能够快速上手并获得实际可运行的代码。

2025-05-27 13:59:52 8

原创 自动驾驶中的博弈式交互规划:从理论到实践

参与人 (Players):博弈中的决策主体。在自动驾驶场景中,参与人可以是自车(Ego Vehicle)、周围的其他车辆(Other Vehicles, OVs)、行人、非机动车,甚至可以是交通管理系统。每个参与人被假定为能够理性地选择策略。策略 (Strategies):每个参与人可以选择的行动方案或决策规则。纯策略 (Pure Strategy):参与人在博弈的每个阶段都确定地选择一个特定的行动。例如,在交叉路口,车辆可以选择“通行”或“等待”。混合策略 (Mixed Strategy)

2025-05-27 13:37:05 6

原创 自动驾驶规划控制教程——不确定环境下的决策规划

不确定性是自动驾驶技术实现安全、可靠应用的核心障碍。本教程面向具备一定理论基础的研究人员和高级工程师,强调理论深度与代码实践的结合。Contingency Planning (应急规划) 作为核心实战内容,将被详细讲解和实现。为实现模块化设计,清晰的接口定义至关重要。

2025-05-27 13:00:30 7

原创 自动驾驶决策规划框架详解:从理论到实践

自动驾驶技术旨在赋予车辆自主导航和驾驶的能力,其中决策规划模块扮演着核心角色,如同人类驾驶员的大脑,负责感知环境、分析路况、做出判断并规划行动。本节将阐述决策规划相关的核心概念,明确其在自动驾驶系统中的定位、重要性及面临的挑战。指车辆在特定交通场景下,根据环境信息、交通规则和自身状态,选择下一步应执行的宏观驾驶行为的过程,例如保持车道、换道、超车、跟车、避障、停车等。它回答的是“我该做什么?”的问题。

2025-05-27 12:57:38 8

原创 海量开源数据集获取指南:优质平台与下载资源全解析

开源数据集的丰富性为数据科学和人工智能的发展提供了前所未有的机遇。从大型综合平台到特定领域的专业数据库,再到政府的开放数据倡议,获取数据的途径日益多样化。希望本文提供的这份开源数据集获取指南,能够帮助您在数据的海洋中找到所需的宝藏,加速您的研究与创新进程。请记住,数据探索本身就是一场充满发现的旅程,祝您一切顺利!

2025-05-27 12:11:05 476

原创 自动驾驶规划控制算法教程:从理论到实践

Dijkstra 算法由计算机科学家 Edsger W. Dijkstra 于1956年构思并于1959年发表 (),是一种经典的单源最短路径算法。它用于在带非负权重的图中找到从一个源节点到所有其他节点的最短路径。在图中找出从源节点到图中所有其他节点的最短路径。基于贪心策略。算法维护两个节点集合:一个集合 S 包含已找到最短路径的节点,另一个集合 U 包含尚未找到最短路径的节点。在每一步,算法从 U 中选择一个距离源节点最近的节点,将其加入 S,并更新其邻居节点的距离。

2025-05-27 12:08:50 8

原创 自动驾驶规划控制(PnC)技术详解与实战

精确定义:自动驾驶规划与控制(PnC)是指车辆根据感知系统获取的实时环境信息(如其他车辆、行人、交通信号灯、道路边界等)、高精度地图数据(HD Map)以及全局导航指令(如目的地),自主地进行驾驶决策(例如,是否换道、何时超车)、行为规划(确定一系列驾驶动作)、路径规划(生成具体的行驶轨迹),并最终生成精确的控制指令(如油门、刹车、转向角度)以操控车辆按照预定轨迹安全、平稳、高效行驶的全过程。在自动驾驶系统架构中的位置。

2025-05-27 11:28:13 8

原创 多模态三维形状补全方法研究:应用场景实现与系统集成

模型轻量化对于移动端和低算力设备至关重要,结合隐空间优化(如SDFusion的VQ-VAE)和模型压缩(如INT8量化)是富有前景的策略,目标是在保持精度的同时大幅缩小模型体积和加速推理。处理大规模点云需要采用分层数据结构(如Octree索引)、异步加载机制以及稀疏卷积网络(如Minkowski Engine)等技术,以克服内存和计算瓶颈,实现对城市级场景等海量数据的有效补全。实时性能与精度权衡。

2025-05-27 08:15:51 10

原创 第二章 多模态三维形状补全的理论基础与技术

三维点云(Point Cloud)是指定义在三维欧氏空间中的一组离散数据点的集合。每个点p_i通常由其三维坐标(x, y, z)唯一标识。除基本坐标外,点还可以携带其他属性信息,如颜色(r, g, b)、法向量、反射强度(intensity)、时间戳等。数学上,一个点云P可以表示为:其中,N是点云中点的总数量,d是每个点的维度,通常d ≥ 3。若仅含坐标,则d=3;若包含坐标和颜色,则d=6。一种灵活的格式,可以存储顶点、面片、颜色、法向量等多种信息,支持ASCII和二进制两种编码。

2025-05-26 23:43:22 9

原创 第四章:多模态三维形状补全方法的实验与结果分析

本章的核心目的在于通过一系列周密设计与严格执行的实验,对本文提出的多模态三维形状补全方法(后文简称“本方法”)的各项性能进行系统性、多维度的评估与验证。我们关注的焦点不仅限于传统的补全精度,更延伸至生成结果的多样性、模型对不同输入模态(如图像、文本、部分观测形状)的响应能力,以及与当前领域内最先进技术(State-of-the-Art, SOTA)相比的综合表现。通过这些实验,我们旨在证实本方法在有效利用多模态信息以实现高质量、多样化三维形状补全方面的实际效能及其潜在的优越性。

2025-05-26 23:42:10 71

原创 第三章 多模态三维形状补全方法设计

例如,深度图中的连续表面可以指导点云中孔洞的平滑填充,而点云的已知三维结构可以帮助纠正深度图中的噪声或变形。本章详细阐述了一种基于生成对抗网络(GAN)的多模态三维形状补全方法设计,该方法旨在融合不完整点云与对应深度图信息,以生成高保真、几何细节丰富的完整三维形状。专门针对点云补全的Transformer模型,如。几何一致性旨在确保补全的三维形状在内部结构上合理(例如,没有不必要的自相交、孔洞被自然地填补)、补全部分与已知部分的过渡平滑无缝,以及在可能的情况下保持物体应有的对称性(如果物体本身是对称的)。

2025-05-26 23:20:39 166

原创 第一章:引言 —— 面向三维重建的多模态三维形状补全方法研究

是:从观测到的、通常是部分缺失或稀疏的三维数据(如点云)出发,通过推理和预测,恢复或生成物体完整的几何形状。核心目标是生成一个在几何上完整无缺、结构上合理可信、细节上尽可能逼真的三维模型 (

2025-05-26 23:13:34 16

原创 基于MONAI框架的医学影像多模态融合与高级AI技术研究

继承PyTorch的灵活性和易用性。专为2D, 3D, 4D医学影像数据优化。支持从数据准备到模型部署的全流程。提供可组合的变换、网络、损失和度量。强调确定性训练和标准化流程。内置对AutoML (Auto3DSeg), 联邦学习, 自监督学习等的支持。活跃的社区和丰富的学习资源 (MONAI官方教程在临床实践中,医生通常会综合来自不同来源的信息进行诊断和治疗决策。例如,对于脑肿瘤患者,MRI的不同序列(如T1、T2、FLAIR、DWI)可以提供关于肿瘤结构、水肿和血流的不同信息;

2025-05-26 15:14:23 29

原创 MONAI 模型解构、高效训练与精准评估

MONAI 的 monai.networks.nets 模块包含多个预定义网络,如 UNet、DynUNet 和 SwinUNETR。这些网络针对医疗影像任务进行了优化,适合分割、分类等场景。UNet 是一个经典的编码器-解码器结构,适合器官分割;DynUNet 提供动态调整能力,适应不同输入大小;SwinUNETR 结合 Transformer 技术,适合复杂任务如脑肿瘤分割。你可以通过定义继承自 nn.Module 的自定义模型,将其集成到 MONAI 的数据处理和训练流程中。

2025-05-26 15:12:19 334

原创 数据转换与增强的进阶与定制:MONAI Transforms 的核心算法与实践

为特定研究问题设计自定义 Transform 是高级开发者的核心能力。以下是设计高效、可测试、可维护的自定义 Transform 的关键原则。d[key] = np.clip(d[key], 0, 1) # 确保值在 [0, 1]return d代码分析继承性:继承以支持基于键的操作。随机性:通过np.random实现随机亮度调整。错误处理:使用np.clip防止数值溢出。性能:基于 NumPy 的向量化操作,高效处理大图像。若需要支持逆变换,可以继承return dreturn d关键点。

2025-05-26 15:11:44 70

原创 MONAI 数据加载与处理

医学影像数据流的管理和处理是深度学习在医疗影像领域应用的基础。MONAI(Medical Open Network for AI)作为一个基于 PyTorch 的开源框架,为医疗影像深度学习提供了强大的工具和库。本文将深入探讨 MONAI 在数据加载与处理方面的艺术,涵盖高级数据集类、复杂数据格式处理、大规模数据集管理、元数据(MetaTensor)的运用以及高效数据处理流水线的设计。内容以章节形式列出,逻辑清晰,重点关注代码实现,并提供可复制的 Python 代码示例,适合高级开发者的需求。

2025-05-26 15:10:51 11

原创 MONAI 环境配置与项目工程化最佳实践

环境管理对于确保 MONAI 项目在不同平台上的可复现性、可扩展性和高效部署至关重要。本文将详细探讨 MONAI 的高级环境管理和部署策略,涵盖安装配置、依赖管理、虚拟化技术和硬件加速优化,适合高级开发者的需求。通过遵循上述最佳实践,您可以确保 MONAI 项目在不同环境中的可复现性、可扩展性和高性能。在高性能计算(HPC)集群中,Singularity 是首选工具,因为它支持非 root 用户运行且与共享文件系统兼容。在云平台上部署 MONAI 时,容器化技术(如 Docker)可确保环境一致性。

2025-05-26 15:10:15 9

原创 MONAI 基石与医学影像AI生态:代码驱动的深度理解

面向高级开发者和研究者的 MONAI 核心架构与设计哲学剖析欢迎来到 MONAI 的深度探索之旅!MONAI (Medical Open Network for AI) 作为一个基于 PyTorch 的开源框架,专为医学影像AI而生。它不仅仅是一个工具库,更是一个旨在加速研究创新、提升可复现性、并促进临床转化的生态系统。本篇博客将深入 MONAI 的核心,通过代码示例,揭示其设计哲学、核心架构的奥秘,探讨其在庞大AI生态中的独特位置,并思考它如何助力高级开发者应对复杂研究项目的挑战。

2025-05-26 15:09:05 248

原创 MONAI 高级开发者研究教程专栏:从精通到引领医学影像AI创新

MONAI 的深度定制与社区贡献:模块化设计的再思考:回顾MONAI的核心组件(Data, Transforms, Networks, Losses, Metrics, Engines, Handlers, Bundle),理解其接口设计和依赖关系,为自定义打下坚实基础。实现研究专用的高级组件:自定义数据加载器:针对特殊数据源或协议。自定义复杂转换:如基于配准的转换、特定伪影去除。自定义网络层或完整模型:集成最新的研究成果。自定义损失函数:针对特定任务目标或数据特性。

2025-05-26 15:00:41 422

原创 Transformer 模型的领域适应与高效部署:从预训练到模型压缩的全面指南

Transformer模型无疑是当前人工智能浪潮的核心驱动力之一。本文从领域适应与任务特化,以及模型压缩与高效部署两个维度,系统地探讨了将Transformer模型应用于实际场景的关键技术和策略。在领域适应方面,通过领域预训练、持续预训练、多任务学习和迁移学习,可以有效提升模型在特定领域或任务上的性能。针对跨语言场景和低资源语言,多语言预训练模型和专门的适应技术(如适配器、数据增强)发挥着重要作用。在模型压缩与高效部署方面,知识蒸馏、量化、剪枝与稀疏化等技术能够显著减小模型尺寸和计算复杂度。

2025-05-25 14:39:50 36

原创 Transformer预训练模型微调技术全解析

本文系统解析了Transformer预训练模型的微调技术,涵盖全参数微调(FFT)和参数高效微调(PEFT)方法。FFT虽性能优异但面临计算资源消耗大、存储成本高和灾难性遗忘等问题;PEFT方法(如LoRA、Adapter、Prefix-Tuning等)通过冻结大部分参数、仅微调少量参数,显著降低了资源需求,同时保持了模型性能。文章详细对比了各类方法的优缺点和适用场景,并提供了实战代码框架。此外,还探讨了提示学习、少样本学习和持续学习等新兴范式,以及应对灾难性遗忘的策略。展望未来,更高效的PEFT方法、多模

2025-05-25 14:28:00 45

原创 【医学影像 AI】TorchIO医学影像数据增强:从入门到精通的全面指南

IXI (Information eXtraction from Images) 数据集是一个包含近600名健康被试的脑部MR影像集合。该数据集由英国伦敦的三家医院(Hammersmith Hospital, Guy's Hospital, Institute of Psychiatry)合作采集。主要特点:对每位被试,通常采集了多种MR序列,包括:T1加权像 (T1-weighted, T1w)T2加权像 (T2-weighted, T2w)

2025-05-25 14:06:29 34

原创 【医学影像 AI】探索 MONAI:医学影像 AI 的综合框架

提供大量针对 2D、3D 甚至 4D 医学影像数据的变换操作,包括加载、格式转换、强度调整、空间变换、数据增强等。这些变换支持字典式 (dictionary-based) 和数组式 (array-based) 输入,易于组合成复杂的数据处理流水线。包含多种 Dataset 实现,如 `Dataset`, `CacheDataset`, `PersistentDataset`, `SmartCacheDataset`,通过不同的缓存策略显著提升数据加载效率,特别是在处理大规模 3D 影像数据时。

2025-05-25 14:02:47 55

原创 第七课 医学影像学临床研究数据管理与统计分析思路

多模态数据特征:现代医学影像学研究通常涉及多种成像模态,包括X线摄影、计算机断层扫描(CT)、磁共振成像(MRI)、超声成像、核医学成像等。每种模态都有其特定的物理原理、成像参数和诊断价值,产生的数据类型和格式各异。数据量庞大:单次影像检查可产生数百至数千幅图像,每幅图像包含数万至数百万个像素点。一项涉及数百名患者的研究可能产生TB级别的原始数据,对存储、传输和处理能力提出了极高要求。时序性特征明显:许多临床研究需要对患者进行长期随访,观察疾病进展或治疗效果,形成时间序列数据。

2025-05-25 13:30:00 46

原创 【医学影像 AI】医学影像 AI 入门:PyTorch 基础与数据加载

医学影像(Medical Imaging)是指为了医疗或医学研究,对人体或人体某部分,以非侵入或微创方式取得内部组织影像的技术与处理过程。它通常包含医学成像系统(Medical Imaging System)和医学图像处理(Medical Image Processing)两大研究方向,前者关注图像的形成机理与设备,后者则侧重于对已获取图像的分析与解读(百度百科-医学影像。

2025-05-25 13:22:42 159

原创 [医学影像 AI] 使用 PyTorch 和 MedicalZooPytorch 实现 3D 医学影像分割

Dice系数和HD95是评估3D医学影像分割性能的关键。对每个前景类别单独计算指标,并报告平均值。对于基于补丁的模型,评估时需要使用如TorchIO的来获得整个体积的预测。2D切片对比和3D渲染能提供直观的分割质量反馈。结果分析应指导下一轮的模型改进和实验设计。本教程详细介绍了使用PyTorch和MedicalZooPytorch框架,针对I-Seg 2017婴儿脑部MRI数据集进行3D分割的完整流程。

2025-05-25 13:16:13 132

原创 【医学影像 AI】使用 PyTorch 和 MedicalTorch 实现脊髓灰质分割

GM SC Challenge 最初是为了比较和评估不同脊髓灰质分割算法的性能而组织的。该挑战赛及其数据集的详细信息发表在 NeuroImage 杂志上,题为 "Spinal cord grey matter segmentation challenge" (NeuroImage。

2025-05-25 13:12:14 133

原创 第九课 影像文章插图及图表制作完全指南:从原理到应用

《学术插图与图表制作指南:原理、工具与规范》 摘要:本文系统阐述学术研究中图表制作的理论基础与实践方法,从视觉认知心理学和色彩理论出发,解析高效信息传达的底层原理。详细介绍Photoshop、Illustrator等图像处理软件及Origin、Prism等专业制图工具的特点与适用场景,提供工具选择的决策框架。重点探讨学术图表的设计原则,包括清晰性、简洁性等核心要素,分析不同类型图表的规范应用。最后归纳主流期刊的技术要求,强调分辨率、格式等关键指标,并提供提升图表质量的实用技巧。本指南旨在帮助科研人员创建兼具

2025-05-25 10:23:00 22

原创 第八课 SPSS 在医学影像分析中的基本应用场景

SPSS在医学研究中扮演着多重角色。首先,它是一个强大的数据管理平台,能够处理来自临床试验、流行病学调查、实验室研究以及影像学检查等多种来源的数据。其次,SPSS提供了从基础描述性统计到高级多变量分析的完整统计工具链,支持研究者进行数据探索、模式识别、假设检验、预测模型构建等一系列分析任务。SPSSAnalysis.com等机构提供的服务也从侧面印证了其在医学研究,特别是学生和科研人员数据分析需求中的重要性。

2025-05-25 10:12:30 26

原创 第四课 医学影像文献检索思路与方法

医学影像文献检索是指通过系统化的方法,从海量的学术资源中查找与医学影像相关的文献,如研究文章、案例报告和综述。这些文献涉及CT、MRI、PET等影像技术,广泛应用于疾病诊断、治疗规划和医学研究。检索过程需要结合关键词、图像特征或语义分析,以快速定位高质量信息。医学影像文献检索是指通过系统化的方法,从学术数据库、期刊和其他资源中查找与医学影像相关的文献。这些文献包括研究文章、案例报告、综述和教科书,涉及影像技术的开发、应用和临床意义。

2025-05-25 08:59:32 33

原创 第六课 医学影像研究中的统计分析方法(下)

影像组学是通过高通量提取医学影像中的定量特征,并建立预测模型的新兴领域。影像组学分析通常包括特征提取、特征选择、模型构建和验证等步骤。特征类型:形状特征:描述感兴趣区域的几何特性一阶统计特征:描述像素强度的分布特征纹理特征:描述像素强度的空间分布模式小波特征:基于小波变换提取的多尺度特征。

2025-05-25 08:19:15 568

原创 第五课 医学影像研究中的统计分析方法(上)

假设我们进行m次独立的假设检验,每次检验的显著性水平都是α,那么至少有一次错误拒绝原假设的概率(家族错误率,FWER)为1-(1-α)^m。需要注意的是,均值对异常值较为敏感,当数据中存在极值时,均值可能不能很好地代表数据的典型水平。如何从这些复杂的影像数据中提取有意义的信息,并通过科学的统计分析方法得出可靠的结论,已成为医学影像研究领域的核心问题。在医学影像研究中,备择假设的设定需要基于临床问题和研究目的,可能是双侧的(存在差异但方向不确定)或单侧的(存在特定方向的差异)。

2025-05-25 08:09:04 239

原创 第三课 医学影像Article文章格式详解:从入门到精通的撰写指南

摘要是文章的浓缩版,通常在200-300字左右,概括了研究的目的、方法、主要结果和结论。读者通常会先阅读摘要来决定是否需要阅读全文。简要介绍研究的背景和重要性,阐述研究的必要性。清晰说明研究要解决的问题或要达到的目标。简述研究的设计、样本、成像技术、数据分析方法等。概括最重要的研究发现,给出关键的数据和统计结果。基于研究结果,给出明确的结论和意义。摘要帮助读者快速了解文章的核心内容,提高信息获取效率。高质量的摘要能够吸引更多潜在读者。撰写技巧:摘要应能够独立阅读和理解,不需要参考正文。

2025-05-25 07:58:09 210

原创 第二课:医学影像研究论文类型介绍——科研航海图的绘制与解读

医学影像研究论文的世界丰富多彩,每种类型都有其独特的角色和价值。从开创性的方法学探索,到严谨的临床应用验证,再到高屋建瓴的综述评论,它们共同构成了医学影像知识体系不断发展和完善的基石。对于医学影像领域的研究者而言,深刻理解这些论文类型的内涵、结构、方法学要求和报告规范,不仅能够帮助我们更有效地从浩如烟海的文献中汲取知识,指导自身的研究实践,更能让我们在撰写和发表自己的研究成果时游刃有余,准确地将自己的发现传递给学术界和临床医生,最终造福于患者。

2025-05-25 07:50:21 351

原创 第一课:医学影像研究的科学思维与问题提出

课程目标:课程大纲与核心内容:引言 (约500字)第一部分:医学影像研究中的科学思维科学思维的内涵与基本原则医学影像研究的特点与科学思维的结合培养科学思维的途径第二部分:医学影像研究问题的来源与挖掘临床实践中的问题驱动文献回顾中的问题启发技术进展与方法学创新带来的问题第三部分:研究问题的凝练、评估与表述从初步想法到清晰的研究问题评估研究问题的标准——FINER原则 研究问题的表述——PICO/PICOT原则 (主要针对临床研究问题) 研究假设的提出第四部分:医学影像研究问题提出的伦理考量总结与展望

2025-05-24 21:49:58 399

原创 医学影像科研概述与研究伦理

医学影像科研致力于研究和开发用于观察人体内部结构和功能的影像技术,如X射线、计算机断层扫描(CT)、磁共振成像(MRI)、超声波和核医学成像。这些技术帮助医生诊断疾病、制定治疗方案并监测疗效。研究不仅推动技术创新,还促进了疾病机制的深入理解和个性化医疗的发展。例如,功能性MRI(fMRI)在脑科学研究中揭示了神经活动模式。医学影像科研是指通过影像技术研究人体内部结构和功能的科学活动,涵盖X射线、CT、MRI、超声波和核医学成像等多种技术。疾病诊断:通过影像发现疾病早期迹象,如CT检测肺癌结节。治疗规划。

2025-05-24 21:43:30 589

原创 深度学习模型在PDE求解中的实战:详细综述

传统数值方法,如有限差分法(FDM)、有限元法(FEM)和谱方法,虽然在低维问题中表现良好,但在高维情况下往往效率低下。深度学习模型通过强大的函数逼近能力,可以直接学习PDEs的解或解算子,绕过传统方法对网格的依赖。本文将深入探讨深度学习模型在PDEs求解中的实际应用,重点介绍物理信息神经网络(PINNs)、深度BSDE方法和傅里叶神经算子(FNO),并提供可运行的代码示例。以下是三种关键方法及其在PDEs求解中的应用。以下是深度学习方法在具体PDEs求解中的实际案例,展示其在不同领域的应用。

2025-05-24 18:10:51 104

空空如也

空空如也

TA创建的收藏夹 TA关注的收藏夹

TA关注的人

提示
确定要删除当前文章?
取消 删除