一棵二叉搜索树的前序遍历序列为:30, 20, 10, 15, 25, 23, 39, 35, 42,下列哪项对应此二叉搜索树的后序遍历序列?
答案:A、10, 20, 15, 23, 25, 35, 42, 39, 30
B、15, 10, 25, 23, 20, 42, 35, 39, 30
C、15, 20, 10, 23, 25, 42, 35, 39, 30
D、15, 10, 23, 25, 20, 35, 42, 39, 30
答案是:D
最近在牛客网刷到了这道单项选择题,难度4颗星。我觉得很久没接触的话,一些概念会有些模糊。下面给大伙分享下思路。
首先,我们来看一下二叉搜索树的定义:二叉搜索树,又叫二叉查找树、二叉排序树。它或者是一棵空树,或者是具有下列性质的二叉树: 若它的左子树不空,则左子树上所有结点的值均小于它的根结点的值; 若它的右子树不空,则右子树上所有结点的值均大于它的根结点的值; 它的左、右子树也分别为二叉排序树。
根据先序遍历的定义,30是根结点。根据二叉搜索树的定义,左子树:20,10,15,25,23。右子树:39,35,42。同理,左子树根节点为20,根据排序树的要求,10,15位于左子树的左子树,根据题目里的先序遍历(30, 20, 10, 15, 25, 23, 39, 35, 42)10节点在15节点之前,所以10是左子树的左子树的根,15是右子树。25,23位于左子树的右子树。同理,25是左子树的右子树的根,23是右子树。同理,左子树的右子树,右子树根节点为39,根据排序树要求,35是左子树,42是右子树。
下面手画一个简图:
一道不错的题目。