元素查找

public int findElement(int[] A, int n, int x) {
        //return findElementHelp(A, 0, n - 1, x);
        if (n == 1) {
            return 0;
        } else {
            if (n == 2) {
                if (A[0] == x) {
                    return 0;
                } else {
                    return 1;
                }
            }
        }
        if (A[0] < A[n - 1]) {
            return Arrays.binarySearch(A, 0, n, x);
        }
        int left = 0;
        int right = n;

        if (A[0] < A[1]) {//先升后升,(注意不是先升后降)
            while (left < right) {
                int mid = (left + right) / 2;
                if (mid != 0 && mid != (n - 1) && A[mid] > A[mid + 1] && A[mid - 1] < A[mid]) {//如果找到拐点
                    return Math.max(Arrays.binarySearch(A, 0, mid + 1, x), Arrays.binarySearch(A, mid + 1, n, x));
                } else {
                    if (A[mid] > A[0]) {
                        left = mid + 1;
                    } else {
                        right = mid;
                    }
                }
            }
        } else {
            while (left < right) {
                int mid = (left + right) / 2;
                if (mid != 0 && mid != (n - 1) && A[mid] < A[mid + 1] && A[mid - 1] > A[mid]) {//如果找到拐点
                    return Math.max(
                            downBinarySearch(A, 0, mid + 1, x),
                            Arrays.binarySearch(A, mid + 1, n, x));
                } else {
                    if (A[mid] > A[n - 1]) {
                        left = mid + 1;
                    } else {
                        right = mid;
                    }
                }
            }
        }
        return -1;
    }

    private int downBinarySearch(int[] A, int left, int right, int x) {

        while (left < right) {
            int mid = (left + right) / 2;
            if (A[mid] == x) {
                return mid;
            } else {
                if (A[mid] < x) {
                    right = mid;
                } else {
                    left = mid + 1;
                }
            }
        }
        return -1;
    }
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值