概率题(扔硬币)

版权声明:这里的blog都是我的原创,未经允许可以随便转载。 https://blog.csdn.net/qq_29728627/article/details/53464573

问题

A 有 n 个硬币,B 有 n+1 个硬币,谁丢的正面多谁赢,问 A 不输的概率?
注意:不输二字

解法

我看了一些网上的答案,大多数写的不是很流畅,所以我尝试写一个清晰易懂的解法,相信小白也可以看懂。
    首先考察另一个问题:我们分两个阶段来扔硬币,假设在第一阶段A扔了 n 枚硬币,B扔了 n 枚硬币。并且我们设 P(A>B) 是这个阶段A扔出的硬币出现正面的次数 > B扔出的硬币出现正面的次数。我们不妨设
    P(A > B) = x
    P(A == B) = y
    又由对称性有 P(A < B) = x
    那么 --> 2x + y = 1

现在考察第二个阶段
B扔最后一个硬币,也就是第 n+1 个硬币,这个硬币是正面的概率是 0.5。
现在我们分类讨论,做一个总结(所有的硬币扔完):
    1.P1(A不输)= x * (0.5+0.5), x表示第一阶段的x,什么意思呢?其实是这样的,如果第一阶段A > B,那么第二阶段不管是反面还是正面,A都不会输。
    2.P2(A不输) = y×0.5。如果第一阶段A==B,那么第二阶段B是反面A
A不输 
• 假如之前A>B,则无论怎么扔,A都不会输,最多平
• 如果A==B,则B扔了正面,A才会输,这是0.5y
• 如果A<B,则无论B怎么扔,A都输,所以是x
所以A输的概率是:x + 0.5y = 0.5 * (2x + y) = 0.5A不输的概率是1 - 0.5 = 0.5
展开阅读全文

没有更多推荐了,返回首页