搬运工搬了n多论文看的,大老勿怪啊 ,学习用
在这篇论文中,来自布加勒斯特大学、中佛罗里达大学的 Mubarak Shah(IEEE Fellow)等几位研究者对计算机视觉中的 100 多篇去噪扩散模型论文进行了全面回顾。
扩散模型在深度生成模型中自成一派,最近成为计算机视觉领域最热门的话题之一(见图 1)。扩散模型展示了强大的生成能力,无论是生成高水平的细节还是其生成的多样性,都让人印象深刻。
我们甚至可以说,这些生成式模型将生成式建模领域的标准提高到了一个全新的水平,尤其是 Imagen 和 Latent Diffusion Models(LDM)等模型。迄今为止,扩散模型已被应用于各种生成式建模任务,如图像生成(image generation)、图像超分(mage super-resolution)、图像修复( image inpainting)、图像编辑(image editing)、图像转换(image-to-image translation)等等。此外,人们发现扩散模型学习到的潜在表征在鉴别性任务中也很有用,例如,图像分割、分类和异常检测。这证实了去噪扩散模型具有广泛的适用性