无需运维!AWS全托管服务构建RAG应用,让AI秒答你的业务难题

 在AWS上快速构建检索增强生成(RAG)应用,可以结合以下服务和步骤实现高效、可扩展的解决方案。以下是基于AWS服务的详细构建流程:


1. RAG 核心架构

RAG(Retrieval-Augmented Generation)的核心流程包括:

  1. 数据准备:文档存储与处理

  2. 向量化:文本转换为向量嵌入(Embeddings)

  3. 检索:基于语义相似度的向量检索

  4. 生成:大语言模型(LLM)生成答案

 


2. AWS 服务选型

(1) 数据存储与处理
  • Amazon S3
    存储原始文档(PDF、TXT等),作为数据湖的核心存储。

  • Amazon Textract
    提取非结构化文档(如PDF)中的文本。

  • Amazon Comprehend
    文本分析(关键词提取、实体识别等)。

(2) 向量化与检索
  • Amazon OpenSearch Service
    支持向量搜索的托管搜索引擎,用于存储向量和快速检索相似文本。

  • AWS Lambda
    无服务器计算,处理文档分块、调用模型生成嵌入。

  • Amazon SageMaker
    可选,用于部署自定义嵌入模型(如Sentence-BERT)。

(3) 大语言模型(LLM)
  • Amazon Bedrock
    托管主流LLM(如Anthropic Claude、AI21 Labs),直接调用生成答案。

  • Amazon SageMaker JumpStart
    部署开源模型(如Llama-2、Falcon)。

(4) 应用层
  • API Gateway + Lambda
    构建RESTful API,处理用户查询并返回结果。

  • AWS Amplify
    快速部署前端Web界面。


3. 实现步骤

步骤1:文档处理与向量化
  1. 将文档上传至S3。

  2. 使用Lambda触发Textract/Comprehend处理文档,生成纯文本。

  3. 对文本分块(如每段512 tokens),通过嵌入模型(如AWS Titan Embeddings)转换为向量。

  4. 向量数据存入OpenSearch的索引中。

示例Lambda处理逻辑(Python):

import boto3

def handler(event, context):
    s3 = boto3.client('s3')
    textract = boto3.client('textract')
    # 从S3获取文档并提取文本
    response = textract.detect_document_text(
        Document={'S3Object': {'Bucket': 'my-bucket', 'Name': 'doc.pdf'}}
    )
    text = " ".join([item['Text'] for item in response['Blocks'] if item['BlockType'] == 'LINE'])
    # 分块并生成向量
    chunks = split_text(text)
    embeddings = generate_embeddings(chunks)  # 调用Bedrock或SageMaker
    # 存储到OpenSearch
    opensearch.index(index='rag-index', body={'vector': embeddings, 'text': chunks})

 

步骤2:语义检索
  1. 用户提问时,通过API Gateway触发Lambda。

  2. Lambda将问题转换为向量,查询OpenSearch获取Top-K相似文本片段。

  3. 将检索结果与问题拼接为LLM的输入。

OpenSearch向量查询示例:

{
  "size": 5,
  "query": {
    "knn": {
      "vector_field": {
        "vector": [0.1, 0.2, ..., 0.5],  # 问题向量
        "k": 5
      }
    }
  }

步骤3:生成答案

调用Amazon Bedrock的LLM生成最终回答:

bedrock = boto3.client(service_name='bedrock-runtime')

prompt = f"基于以下上下文:{context},回答:{question}"
response = bedrock.invoke_model(
    modelId='anthropic.claude-v2',
    body=json.dumps({"prompt": prompt, "max_tokens_to_sample": 300})
)
answer = json.loads(response.get('body').read()).get('completion')


4. 优化与扩展

  • 性能优化

    • 使用OpenSearch的近似最近邻(ANN)索引加速检索。

    • 对Lambda启用预置并发减少冷启动延迟。

  • 成本控制

    • 对S3启用生命周期策略归档旧数据。

    • 使用Spot实例运行SageMaker(如果部署自定义模型)。

  • 安全增强

    • 通过IAM角色限制服务权限。

    • 使用OpenSearch的加密存储和VPC隔离。


5. 参考架构图 

用户请求 → API Gateway → Lambda → 生成问题向量
                          ↓
                      OpenSearch(检索相似文本)
                          ↓
                   Lambda整合上下文 → Bedrock(生成答案)
                          ↓
                  返回结果 → 前端(Amplify) 


6. 场景示例

问题
“AWS的EC2实例有哪些类型?”

流程

  1. 检索到关于EC2实例类型的文档片段(如通用型、计算优化型等)。

  2. LLM生成结构化回答:
    “AWS EC2实例主要分为:1. 通用型(M系列)... 2. 计算优化型(C系列)...”

AWS EC2 购买全流程详解 | 新手必看,3分钟快速上手云服务器!https://mp.weixin.qq.com/s/xTlfBIHm-twUM2BYQeB2xQ 

 

 

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值