前言
在深度学习的世界中,张量是我们处理数据的基础工具。但每次创建张量时,我们不总是希望从零开始,尤其是当我们已有一个张量,想要创建一个形状一样但内容不重要的张量时。想象一下,你有一个空白画布,等待着你尽情挥洒创意。这个画布不用初始化,不用设定具体内容,它只关心形状和位置。这就是 torch.empty_like 的用武之地,它帮你创建一个新的张量,继承原有张量的形状和设备,但不会赋予它任何初始值。相当于把你的张量数据交给内存,留给你下一步操作去填充它,给你更多灵活性和控制权。就像把空白的纸张交到你手中,接下来,想画什么就画什么。
简介
torch.empty_like 是 PyTorch 中一个非常实用的函数,它可以根据已有张量的形状和设备,快速创建一个新的张量。与其他张量函数不同,torch.empty_like 不会初始化新张量的值,它只是简单地分配内存空间。想象一下,它就像你在一个商场中找到一个空的购物车,大小、形状和位置都和你的需求匹配,但里面完全空白,没有任何东西。接下来的任务就是你自己决定往这个“购物车”里装什么。因为它没有被初始化,所以如果你不去填充,它的内容可能是随机的,甚至是垃圾数据。它适用于需要快速分配空间但又不关心初始内容的场景,帮助你节省计算时间和内存开销。