算法——最短路径——Floyd算法
作用:求任意两点的最短路径
适用条件:无负边
时间复杂度:O(N3)
原理:从A到B的最短路径有两种有两种情况,一是从A直接到B,二是从A经过若单个节点到达B,所以我们对于每一个点X检测,对于任意A 和B,Dis(AX) + Dis(XB) < Dis(AB)是否成立,如果成立,则更新Dis(AB)=Dis(AX) + Dis(XB) 。
代码实现如下
#include <stdio.h>
int main()
{
int e[10][10],k,i,j,n,m,t1,t2,t3; //e为邻接矩阵
int inf=99999999; //用inf(infinity的缩写)存储一个我们认为的正无穷值
//读入n和m,n表示顶点个数,m表示边的条数
scanf("%d %d",&n,&m);
//初始化
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(i==j) e[i][j]=0;
else e[i][j]=inf;
//读入边
for(i=1;i<=m;i++)
{ //t1 t2 代表边的两个节点,t3代表弧长
scanf("%d %d %d",&t1,&t2,&t3);
e[t1][t2]=t3;
}
//Floyd-Warshall算法核心语句
for(k=1;k<=n;k++)
for(i=1;i<=n;i++)
for(j=1;j<=n;j++)
if(e[i][j]>e[i][k]+e[k][j] )
e[i][j]=e[i][k]+e[k][j];
//输出最终的结果
for(i=1;i<=n;i++)
{
for(j=1;j<=n;j++)
{
printf("%10d\n",e[i][j]);
}
}
return 0;
}
代码为我根据网上的代码修改所得