弗洛伊德(Floyd)算法介绍
- 和Dijkstra 算法一样,弗洛伊德(Floyd)算法也是一种用于寻找给定的加权图中顶点间最短路径的算法。该算法名称以创始人之一、1978 年图灵奖获得者、斯坦福大学计算机科学系教授罗伯特·弗洛伊德命名
- 弗洛伊德算法(Floyd)计算图中各个顶点之间的最短路径
- 迪杰斯特拉算法用于计算图中某一个顶点到其他顶点的最短路径。
- 弗洛伊德算法VS 迪杰斯特拉算法:迪杰斯特拉算法通过选定的被访问顶点,求出从出发访问顶点到其他顶点的最短路径;弗洛伊德算法中每一个顶点都是出发访问点,所以需要将每一个顶点看做被访问顶点,求出从每一个顶点到其他顶点的最短路径。
弗洛伊德(Floyd)算法图解分析
- 设置顶点vi 到顶点vk 的最短路径已知为Lik,顶点vk 到vj 的最短路径已知为Lkj,顶点vi 到vj 的路径为Lij,则vi 到vj 的最短路径为:min((Lik+Lkj),Lij),vk 的取值为图中所有顶点,则可获得vi 到vj 的最短路径
- 至于vi 到vk 的最短路径Lik 或者vk 到vj 的最短路径Lkj,是以同样的方式获得
- 弗洛伊德(Floyd)算法图解分析-举例说明
示例:求最短路径为例说明
弗洛伊德算法的步骤:
第一轮循环中,以A(下标为:0)作为中间顶点【即把A 作为中间顶点的所有情况都进行遍历, 就会得到更新距离表和前驱关系】,距离表和前驱关系更新为:
分析如下:
- 以A 顶点作为中间顶点是,B->A->C 的距离由N->9,同理C 到B;C->A->G 的距离由N->12,同理G 到C
- 更换中间顶点,循环执行操作,直到所有顶点都作为中间顶点更新后,计算结束
中间顶点 [A, B, C, D, E, F, G]
出发顶点 [A, B, C, D, E, F, G]
终点 [A, B, C, D, E, F, G]
弗洛伊德(Floyd)算法最佳应用-最短路径
- 胜利乡有7 个村庄(A, B, C, D, E, F, G)
- 各个村庄的距离用边线表示(权) ,比如A – B 距离5 公里
- 问:如何计算出各村庄到其它各村庄的最短距离?
代码实现
import java.util.Arrays;
public class FloydAlgorithm {
public static void main(String[] args) {
// 测试看看图是否创建成功
char[] vertex = {
'A', 'B', 'C', 'D', 'E', 'F', 'G' };
//创建邻接矩阵
int[][] matrix = new int[vertex.length][vertex.length];
final int N = 65535;
matrix[0] = new int[] {