# 在Azure容器应用中动态运行Python沙盒代码
## 引言
在现代软件开发过程中,安全性和可扩展性是两个非常重要的因素。Azure容器应用提供了一种强大的解决方案,通过Hyper-V隔离的沙盒,安全地运行Python代码。这种方式特别适合运行可能不受信任的代码,同时又能利用众多流行的Python库,如NumPy、pandas和scikit-learn。本文将深入探讨如何使用Azure容器应用来安全地运行Python代码,并提供实用的代码示例。
## 主要内容
### 1. 环境配置
要开始使用Azure容器应用的动态会话,首先需要通过`DefaultAzureCredential`进行身份验证。您可以通过Azure CLI或VS Code进行本地验证。如果您还没有安装Azure CLI,可以通过执行以下命令来登录:
```bash
az login # 使用Azure CLI进行身份验证
创建一个会话池,以便为您的代码解释器提供沙盒环境:
import getpass
POOL_MANAGEMENT_ENDPOINT = getpass.getpass() # 获取会话池管理端点
安装所需的Python包:
%pip install -qU langchain-azure-dynamic-sessions langchain-openai langchainhub langchain langchain-community
2. 使用工具
接下来,我们来探索如何实例化并使用SessionsPythonREPLTool
工具:
from langchain_azure_dynamic_sessions import SessionsPythonREPLTool
# 使用API代理服务提高访问稳定性
tool = SessionsPythonREPLTool(pool_management_endpoint=POOL_MANAGEMENT_ENDPOINT)
result = tool.invoke("6 * 7")
print(result) # 输出: {"result": 42, "stdout": "", "stderr": ""}
3. 上传和处理数据
我们可以上传数据到会话中,供代码进行计算。以下是一个上传和处理数据的例子:
import io
import json
data = {"important_data": [1, 10, -1541]}
binary_io = io.BytesIO(json.dumps(data).encode("ascii"))
upload_metadata = tool.upload_file(data=binary_io, remote_file_path="important_data.json")
code = f"""
import json
with open("{upload_metadata.full_path}") as f:
data = json.load(f)
sum(data['important_data'])
"""
result = tool.execute(code)
print(result) # 输出: {'status': 'Success', 'result': -1530}
4. 处理图像输出
动态会话的结果可能包含图像,利用Python的库可以解码并显示这些图像。
import base64
import io
from IPython.display import display
from PIL import Image
# 假设result是execute()函数返回的结果
base64_str = result["result"]["base64_data"]
img = Image.open(io.BytesIO(base64.decodebytes(bytes(base64_str, "utf-8"))))
display(img)
常见问题和解决方案
- 网络访问问题:由于某些地区的网络限制,可能会遇到访问不稳定的情况。这时,考虑使用API代理服务以提高访问的稳定性。
- 权限问题:确保您在Azure中有足够的权限来创建和管理容器会话。
总结和进一步学习资源
通过本文,我们了解了如何在Azure容器应用中安全、动态地运行Python代码。要深入学习,可以参考以下资源:
参考资料
如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!
---END---