构建基于图数据库的问答应用:从入门到精通

# 引言

在现代数据驱动的世界中,问答应用越来越受到欢迎。特别是基于图数据库的问答系统,可以高效处理复杂关系查询。本指南将帮助您使用Neo4j图数据库构建一个问答系统。通过这种系统,您可以对数据库中的数据提出问题,并获得自然语言答案。

⚠️ **安全注意** ⚠️

构建图数据库问答系统需要执行模型生成的图查询,存在一定的风险。确保数据库连接权限限定在应用所需的最小范围内,以降低风险。更多安全最佳实践,请参见[这里](#)。

# 架构

图数据库问答系统的高层步骤如下:

1. 把问题转换为图数据库查询(如Cypher)。
2. 执行图数据库查询。
3. 使用查询结果回答问题。

# 设置

首先,安装所需的软件包并设置环境变量。本例中,我们使用Neo4j图数据库。

```bash
%pip install --upgrade --quiet langchain langchain-community langchain-openai neo4j

我们默认使用OpenAI模型。

import getpass
import os

os.environ["OPENAI_API_KEY"] = getpass.getpass()  # 输入您的API密钥

# 设置Neo4j凭据
os.environ["NEO4J_URI"] = "bolt://localhost:7687"
os.environ["NEO4J_USERNAME"] = "neo4j"
os.environ["NEO4J_PASSWORD"] = "password"

# 创建与Neo4j数据库的连接,并导入电影和演员信息
from langchain_community.graphs import Neo4jGraph

graph = Neo4jGraph()

movies_query = """
LOAD CSV WITH HEADERS FROM 
'https://raw.githubusercontent.com/tomasonjo/blog-datasets/main/movies/movies_small.csv'
AS row
MERGE (m:Movie {id:row.movieId})
SET m.released = date(row.released),
    m.title = row.title,
    m.imdbRating = toFloat(row.imdbRating)
FOREACH (director in split(row.director, '|') | 
    MERGE (p:Person {name:trim(director)})
    MERGE (p)-[:DIRECTED]->(m))
FOREACH (actor in split(row.actors, '|') | 
    MERGE (p:Person {name:trim(actor)})
    MERGE (p)-[:ACTED_IN]->(m))
FOREACH (genre in split(row.genres, '|') | 
    MERGE (g:Genre {name:trim(genre)})
    MERGE (m)-[:IN_GENRE]->(g))
"""

graph.query(movies_query)  # 执行查询,填充数据

图模式

为了让LLM生成有效的Cypher语句,需要了解图的模式。可以通过refresh_schema()方法刷新图模式信息。

graph.refresh_schema()
print(graph.schema)

使用LangChain提供的内置链,将问题转换为Cypher查询,执行查询,并用结果回答问题。

from langchain.chains import GraphCypherQAChain
from langchain_openai import ChatOpenAI

llm = ChatOpenAI(model="gpt-3.5-turbo", temperature=0)
chain = GraphCypherQAChain.from_llm(graph=graph, llm=llm, verbose=True)
response = chain.invoke({"query": "What was the cast of the Casino?"})
print(response)

常见问题和解决方案

  • 验证关系方向:LLM生成的Cypher语句可能方向错误。通过validate_cypher=True参数可验证并修正方向。
chain = GraphCypherQAChain.from_llm(
    graph=graph, llm=llm, verbose=True, validate_cypher=True
)
response = chain.invoke({"query": "What was the cast of the Casino?"})
print(response)

总结和进一步学习资源

构建基于图数据库的问答系统,能大大简化复杂关系数据的查询。对于更复杂的查询生成,可以探索高级的提示工程和语义层实现技术。

参考资料

如果这篇文章对你有帮助,欢迎点赞并关注我的博客。您的支持是我持续创作的动力!


---END---
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值