deep-learning
文章平均质量分 64
Steve_Xu123
计算机视觉,三维重建
展开
-
自编码器
自编码器自从Hinton 2006年的工作之后,越来越多的研究者开始关注各种自编码器模型相应的堆叠模型。实际上,自编码器(Auto-Encoder)是一个较早的概念了,比如Hinton等人在1986, 1989年的工作。(说来说去都是这些人呐。。。)自编码器简介先暂且不谈神经网络、深度学习,仅是自编码器的话,其原理很简单。自编码器可以理解为一个试图去还原其原始输入的系统。如下图所示。图中,虚线蓝色框转载 2017-11-09 22:29:30 · 3136 阅读 · 0 评论 -
Softmax的解释
作者:忆臻 链接:https://www.zhihu.com/question/23765351/answer/240869755 来源:知乎 著作权归作者所有。商业转载请联系作者获得授权,非商业转载请注明出处。 转载于知乎softmax函数softmax用于多分类过程中,它将多个神经元的输出,映射到(0,1)区间内,可以看成概率来理解,从而来进行多分类!假设我们有一个数组,V,Vi表示V中转载 2017-11-12 10:03:25 · 1398 阅读 · 0 评论 -
FCN全卷积网原理
传统的做图像分割的方式大概是这样的: 以某个像素点中心取一个区域,取图像块的特征做样本训练分类器,分类结果作为此像素点的结果 这样做缺点很明显,比如: 如何确定图像块的大小 从小的图像块(patch)中获得的上下文信息(contex)较少,且极端耗时 FCN的做法是训练一个end-to-end的网络,做pixel-wise的pred转载 2017-11-13 16:23:03 · 599 阅读 · 0 评论 -
FCN2DeepLab
介绍 图像语义分割,简单而言就是给定一张图片,对图片上的每一个像素点分类。 图像语义分割,从FCN把深度学习引入这个任务到现在,一个通用的框架已经大概确定了。即前端使用FCN全卷积网络输出粗糙的label map,后端使用CRF条件随机场/MRF马尔科夫随机场等优化前端的输出,最后得到一个精细的分割图。 前端为什么需要FCN? 分类网络通常会在最后连接几层全连接层,它转载 2017-12-04 22:01:48 · 657 阅读 · 0 评论 -
深度学习知识点(面试)
问题列表如何设置网络的初始值?*梯度爆炸的解决办法***神经网络(MLP)的万能近似定理*神经网络中,深度与宽度的关系,及其表示能力的差异**在深度神经网络中,引入了隐藏层(非线性单元),放弃了训练问题的凸性,其意义何在?**稀疏表示,低维表示,独立表示*局部不变性(平滑先验)及其在基于梯度的学习上的局限性*为什么交叉熵损失相比均方误差损失能提高以 sigmoid 和 soft...转载 2019-05-03 21:27:59 · 3502 阅读 · 0 评论 -
深度学习面试知识点归纳总结
深度学习主要针对CV计算机视觉方向哦,NLP自然语言的童鞋还需自行查漏补缺深度学习基础部分卷积神经网络(CNN)特点:局部区域连接和权值共享。局部区域连接:图像的空间联系是局部比较紧密的,每个神经元其实没有必要对全局图像进行感知,只需对局部进行感知,然后在更高层将局部的信息综合起来就得到了全局的信息。权值共享:图像的一部分统计特性与其它部分是一样的。意味着在这一部分学习的特征也能用在另一...原创 2019-05-06 21:58:39 · 1190 阅读 · 0 评论