bzoj--1257--余数之和sum(数学)

159 篇文章 0 订阅

余数之和sum

Time Limit: 5 Sec   Memory Limit: 162 MB
Submit: 3081   Solved: 1425
[ Submit][ Status][ Discuss]

Description

给出正整数n和k,计算j(n, k)=k mod 1 + k mod 2 + k mod 3 + … + k mod n的值,其中k mod i表示k除以i的余数。例如j(5, 3)=3 mod 1 + 3 mod 2 + 3 mod 3 + 3 mod 4 + 3 mod 5=0+1+0+3+3=7

Input

输入仅一行,包含两个整数n, k。

Output

输出仅一行,即j(n, k)。

Sample Input

5 3

Sample Output

7

HINT

50%的数据满足:1<=n, k<=1000 100%的数据满足:1<=n ,k<=10^9


真是一道数学题啊,要计算k%i的值,我们可以转换一步,mod=k-k/i*i,因为k,i都是整数的原因,所以肯定会出现k/i=k/j=...这个时候我们可以枚举每一个商,进而得到i--j这个区间,在这个区间的等差数列,利用公式不断求解


k/n我们可以得到最小的商i,也就可以求出比最小的商大一的数k/(i+1)(得到的商肯定是一个等差数列),可以列两个数列找一下规律,1--n是总共的长度,但是在这全部的长度中,有着一段一段的数字对应的商是一样,我们要做的就是找到一个个的区间

#include<cstdio>
#include<cmath>
#include<iostream>
#include<algorithm>
using namespace std;
int main()
{
	long long n,k;
	cin>>n>>k;
	long long i=k/n;
	long long l=k/(i+1)+1;
	long long r=n,ans=0;
	while(l)
	{
		ans+=k*(r-l+1)-i*(l+r)*(r-l+1)/2;
		if (l==1) break;
		i=k/(l-1);
		l=k/(i+1)+1;
		r=k/i;
	}
	cout<<ans<<endl;
	return 0;
}


评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值