BZOJ 3944: Sum

Description

这里写图片描述

Input

一共T+1行
第1行为数据组数T(T<=10)
第2~T+1行每行一个非负整数N,代表一组询问

Output

一共T行,每行两个用空格分隔的数ans1,ans2

Sample Input

6
1
2
8
13
30
2333

Sample Output

1 1
2 0
22 -2
58 -3
278 -3
1655470 2

分析

套路题。。复习一下罢了

代码

#include <bits/stdc++.h>

#define N 6050000
#define ll long long

ll phi[N + 5],mu[N + 5];

int tot;
int prime[N + 5];
bool notPrime[N + 5];

std::map <int,ll> mPhi,mMu;

void preWork()
{
    mu[1] = phi[1] = 1;
    for (int i = 2; i <= N; i++)
    {
        if (!notPrime[i])
        {
            prime[++tot] = i;
            mu[i] = -1;
            phi[i] = i - 1;
        }
        for (int j = 1; j <= tot && i * prime[j] < N; j++)
        {
            notPrime[i * prime[j]] = 1;
            if (i % prime[j] == 0)
            {
                mu[i * prime[j]] = 0;
                phi[i * prime[j]] = phi[i] * prime[j];
                break;
            }
            mu[i * prime[j]] = -mu[i];
            phi[i * prime[j]] = phi[i] * phi[prime[j]];
        }
    }

    for (int i = 2; i <= N; i++)
        phi[i] += phi[i - 1], mu[i] += mu[i - 1];
}

ll getPhiAns(ll x)
{
    if (x <= N)
        return phi[x];
    if (mPhi.count(x))
        return mPhi[x];
    ll ans = (ll) x * (x + 1) / 2;
    for (ll i = 2, last; i <= x; i++)
    {
        last = (x / (x / i));
        ans -= (last - i + 1) * getPhiAns(x / i);
    }
    mPhi[x] = ans;
    return ans;
}

ll getMuAns(ll x)
{
    if (x <= N)
        return mu[x];
    if (mMu.count(x))
        return mMu[x];
    ll ans = (ll) x * (x - 1) / 2;
    for (ll i = 2, last; i <= x; i++)
    {
        last = x / (x / i);
        ans -= (last - i + 1) * getMuAns(x / i);
    }
    mMu[x] = ans;
    return ans;
}

int main()
{
    preWork();
    int T;
    scanf("%d",&T);
    while (T--)
    {
        int n;
        scanf("%d",&n);
        printf("%lld ",getPhiAns(n));
        printf("%lld\n",getMuAns(n));
    }
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值