EOJ(动态规划)——3005. 小型组合数

博客探讨了如何使用动态规划方法来计算不超过40的组合数,通过杨辉三角进行预处理,解决了小规模组合数求解的问题。并给出了样例输入输出,包括多组测试用例。
摘要由CSDN通过智能技术生成

单测试点时限: 2.0 秒

内存限制: 256 MB

我们经常需要计算组合数

它表示从 m 个元素中任取 n 个的话,有多少种取法。

例如:从 100 个元素中取 2 个,第一个有 100 种取法,第二个有 99 种取法,再除以两个元素的排列数,共 4950 种取法。

编程计算 m 不大时的组合数值。

输入
第 1 行:整数 T (1≤T≤10) 为问题数

对于每组测试数据:

每行两个整数,m,n,1≤m≤40,0≤n≤m。

输出
对于每个问题,输出一行问题的编号(格式:case #0: 等)。

然后在一行中输出组合数

样例
input
3
2 0
5 3
40 20
output
case #0:
1
case #1:
10
case #2:
137846528820

题目大意:

求小的组合数。

题目解析:

由于范围较小,可以使用杨辉三角打表来做,这种方法最简单。

具体代码:
#include<iostream>
#include<algorithm>
using namespace std;
#define MAXN 41
long long A[MAXN][MAXN];
void init(){
	for(int i=0;i<MAXN;i++){
		A[i][0]=A[i][i]=1;
	}
	for(int i=2;i<MAXN;i++){
		for(int j=1;j<i;j++){
			A[i][j]=A[i-1][j-1]+A[i-1][j];
		}
	}
}
int main() {
	int T;
	cin>>T;
	init();
	for(int i=0;i<T;i++){
		cout<<"case #"<<i<<":"<<endl;
		int a,b;
		cin>>a>>b;
		cout<<A[a][b]<<endl;
	}
	return 0;
}
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值