EOJ(动态规划)——2083. ZigZag

该博客介绍了如何使用动态规划方法解决EOJ中的一道题目,即找到给定序列中最长的ZigZag子序列的长度。博主通过详细解释题意和状态转移方程,帮助读者理解解题思路,并提供了具体的代码实现。
摘要由CSDN通过智能技术生成

单测试点时限: 2.0 秒

内存限制: 256 MB

A sequence of numbers is called a zig-zag sequence if the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a zig-zag sequence.

For example, 1,7,4,9,2,5 is a zig-zag sequence because the differences (6,-3,5,-7,3) are alternately positive and negative. In contrast, 1,4,7,2,5 and 1,7,4,5,5 are not zig-zag sequences, the first because its first two differences are positive and the second because its last difference is zero.

输入
Given a sequence of integers, sequence, return the length of the longest subsequence of sequence that is a zig-zag sequence. A subsequence is obtained by deleting some number of elements (possibly zero) from the original sequence, leaving the remaining elements in their original order.

sequence contains between 1 and 50 elements, inclusive.
Each element of sequence is between 1 and 1000, inclusive.
输出
output the length of the longest subsequence of sequence that is a zig-zag sequence.

样例
input
10
1 17 5 10 13 15 10 5 16 8
output
7
input
6
1 7 4 9 2 5
output
6

题目大意:

求最长子串的问题,子串类似上下跳跃的波形,高-低-高-低…

题目解析:

给每个序列的数字都记录两个值,pdp[i]:这个值作为一个波峰最高顺位,ndp[i]:这个值作为一个波谷最高顺位。然后状态转移方程:
pdp[i]={0~i-1中满足A[j]<A[i]的ndp最大值}
ndp[i]={0~i-1中满足A[j]>A[i]的pdp最大值}

具体代码:
#
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值