单测试点时限: 2.0 秒
内存限制: 256 MB
A sequence of numbers is called a zig-zag sequence if the differences between successive numbers strictly alternate between positive and negative. The first difference (if one exists) may be either positive or negative. A sequence with fewer than two elements is trivially a zig-zag sequence.
For example, 1,7,4,9,2,5 is a zig-zag sequence because the differences (6,-3,5,-7,3) are alternately positive and negative. In contrast, 1,4,7,2,5 and 1,7,4,5,5 are not zig-zag sequences, the first because its first two differences are positive and the second because its last difference is zero.
输入
Given a sequence of integers, sequence, return the length of the longest subsequence of sequence that is a zig-zag sequence. A subsequence is obtained by deleting some number of elements (possibly zero) from the original sequence, leaving the remaining elements in their original order.
sequence contains between 1 and 50 elements, inclusive.
Each element of sequence is between 1 and 1000, inclusive.
输出
output the length of the longest subsequence of sequence that is a zig-zag sequence.
样例
input
10
1 17 5 10 13 15 10 5 16 8
output
7
input
6
1 7 4 9 2 5
output
6
题目大意:
求最长子串的问题,子串类似上下跳跃的波形,高-低-高-低…
题目解析:
给每个序列的数字都记录两个值,pdp[i]:这个值作为一个波峰最高顺位,ndp[i]:这个值作为一个波谷最高顺位。然后状态转移方程:
pdp[i]={0~i-1中满足A[j]<A[i]的ndp最大值}
ndp[i]={0~i-1中满足A[j]>A[i]的pdp最大值}
具体代码:
#