理论:X=a[n]*(n-1)!+a[n-1]*(n-2)!+...+a[i]*(i-1)!+...+a[1]*0! ,其中a[i]为当前未出现的元素中是排在第几个(从0开始)。
个人理解:康拓展开类似于给你一组数,让你求解其在全排列中的位置,或者给你它在全排列中的位置,让你求解数值。
详解:(转自网上的大神)
康拓展开模板:
void cantor(int s[], LL num, int k){//康托展开,把一个数字num展开成一个数组s,k是数组长度
int t;
bool h[k];//0到k-1,表示是否出现过
memset(h, 0, sizeof(h));
for(int i = 0; i < k; i ++){
t = num / fac[k-i-1];
num = num % fac[k-i-1];
for(int j = 0, pos = 0; ; j ++, pos ++){
if(h[pos]) j --;
if(j == t){
h[pos] = true;
s[i] = pos + 1;
break;
}
}
}
}
void inv_cantor(int s[], LL &num, int k){//康托逆展开,把一个数组s换算成一个数字num
int cnt;
num = 0;
for(int i = 0; i < k; i ++){
cnt = 0;
for(int j = i + 1; j < k; j ++){
if(s[i] > s[j]) cnt ++;//判断几个数小于它
}
num += fac[k-i-1] * cnt;
}
}